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Today I’'m going to define the product which gives rise to the structure called string topology. It is a product
defined on the homology of the free loop space of a manifold. We will discuss some algebraic structures this product
exhibits.

Fix a smooth, closed, orientable z-manifold M. The main object of study is the free loop space of M, define by

LM :=Map(S', M)
where we take piecewise smooth maps. Poincaré dual to the cup product on M is the so-called intersection product
H,(M)xH (M)~ H,,,_,(M)

which can be interpreted geometrically as follows. A p-chain can be represented by a p-dimensional submanifold
P. Similarly a g-chain is represented by Q. We can perturb P, Q so as to make their intersection transverse. Then a
standard theorem in differential topology says that PNQ is p+¢—n dimension submanifold of M, hence determines
a chain. Passing to homology this all is well defined and reproduces the above product.

1 The product

There are a couple of ways to define the aforementioned product. Originally, it was defined by Chas and Sullivan
as a type of intersection product. Cohen and Jones came up with a definition that passes through the so-called
Pontryagin-Thom collapse map. Furthermore, they extended this to a product on a related spectrum and upon
taking homology realizes the original string product.

1.1 Via the intersection product

Here we discuss the original definitoin of the string product a la Chas-Sullivan. We consider C,(LM). Each loop
has a marked point, namely the image of 0 € §'. Consider a € C,(LM)and 8 € C,(LM). The set of marked points

of these chains can be viewed as dimension p,q submanifolds of M, i.e p,g-chains on M. We can intersect these to
get a p +q — n chain y on M. Along this chain, the marked points of a, 3 coincide, so we can consder forming a
loop by traversing « then 3 at each point of y. This defined a p + g — n-chain of LM. On homology we denote this
product by

o H,(LM)x H,(LM)— H,.,_(LM).

Before talking about any algebraic structures, let’s go over an equivalent construction of o.

1.2 Via Thom collapse

Let’s recall some general notions about Thom spaces/spectra. Let i : N < M be a k-dimensional submanifold.
Take a tubular neighborhood around N which we can identify with the total space of the normal bundle to the
embedding denoted v,,. Define the map

T:M—v;Ufoo}, 7|, =id, , 7l =00.
Notice that v; U co is nothing but the the Thom space Th(vy ). So we are really producing a map

7: M — Th(y;).



Applying homology we get

iy H,(N) —— H,(Th(v;)) 7= H,_, (N)

where we have postcomposed with the Thom isomorphism. Such a “wrong-way” map is called an Umkher map.

Example 1.1. Lets consider the embedding
A:M—MxM

so that vy ~ T'M. The induced map
A, :Hq(MxM)qu_d(M)

is just the intersection product discussed above.

We can talk about some stringy stuff again. Consider the pull-back space
X =LM x, LM.

This space comes equipped with an obvious map y : X — LM which can be viewed as extending the usual product
on QM. X can also be viewed as the mapping space of figure eights into M. It also fits into the pull-back square

XL IMxIM (1)

J/CV J/CVX ev

M—2 s MxM.

Now LM is certainly not an infinite dimensional manifold. Nevertheless, one can see that the map ev: LM — M isa
(locally trivial) fibre bundle. Since the square is a pull-back, we can therefore view X — LM x LM as a codimension
n embedding. Namely, we can take tubular neighborhoods, and it turns out that

vy >evivy~ev TM.

So we get a Thom collapse map as above
Tx LM x LM — X< TH,
Combining all this we get

Theorem 1.1. There is a product

ZV *
o H(LM)x H (LM) — H.(LM x LM) —— H,_,(X)—-— M.

*

that coincides with the Chas-Sullivan product mentioned above.
Remark. Nothing was special about ordinary homology here. This works just as well for any multiplicative gener-
alized cohomology theory A, so long as M is appropriately oriented.

We now explain how to realize this product as coming from the ring structure on an associated ring spectrum.
For this we will need a “twisted” version of the Thom collapse map. Let { be a vector bundle over M. The
embedding N < M extends to an embedding of total spaces of bundles via pull-back:

it ¢

| ]

N —— M.



Then v+~ i* ®v; so that the Thom collapse map has the form

§U{oo}—>v {)U{oo}

| |
Th({)

{)——Th(E*{®V,).

This construction actually works for any virtual bundle over M. Suppose { = —E where E is some rank £
bundle over M. We form the Thom spectrum Th({) over M as follows. Choose an integer k&’ such that £ <
M x R¥*" and let E* be the k’-dimensional orthogonal complement taken in R¥**". Define the spectrum as

Th({) = Th(—E) = 5~ *+)Th(EL).
In this setting the Thom isomorphism takes the form
HL(Th(=E)) = H_ (M)

Example 1.2. Take { = —TM x —T M and the diagonal embedding M < M x M. Then the induced map
(M x M)~ TMx=TM _T__, yyTHOA (=TMx-TH)
Th(—TM) ANTh(-=TM) ———— Th(-THM).

Atiyah showed that Th(—7M) is actually the Spanier-Whitehead dual of M with a disjoint basepoint added. Mo-
roever, one can check that the above product just gives Spanier-Whitehead dual of A: M — M x M.

Again consider diagram (1). What we do now is pull back the virtual bundle —TM x —TM to LM x LM, and
twist by this. The relevant collapse map is

(LM x LM)(CVXCV)*(—TMX—TM) xev TM@CV*(A*(—TMX—TM))'
But, A*(—=TM x —TM)=—2TM, so we have a map

IM-TMAM-TM ___ x-THM

where we drop pulling back by ev* for notational convenience. The map y : X — LM extends to a map of Thom
spectra

and post-composing with this we get the product
LM~MALM™TM — Ly~

Taking homology and applying appropriate Thom isomoprhisms this reproduces the above product.

What all of this says is that LM~ = Th(—T M) is a ring spectrum. Morally, and rigourously proven by Chas-
Sullivan, the ordinary string product plays nicely with intersection products and the standard loop product on
QM . This manifests itself at the spectrum level as the existence of ring maps

LM~ =M

and
S(OM, ) — LM~

The first map is simpy induced by evaluation. The second map is induced by the fibration:

OM, —— LM

|

{#} —— M

and comes from an appropriate Thom collapse map. Namely pulling back the tangent bundle across the fibration.



1.3 Algebraic structure

It is clear that o provides the structure of an associative, commutative, graded algebra on
HL(M) := H,_y(LM) = H,(LM)(d].

There is slightly more structure here which we mention now.

The original structure that Chas-Sullivan produce is a so-called Batalin-Vilkovisky (BV-) algebra on H. (M). This
algebraic structure crops up everywhere in mathematical physics and is related to the framed little 2-discs operad.
Namely it is a result of Getzler that there is a bijective correspondence between BV algebras and algebras over the
framed little 2-discs operad E,. Actually, its an algebra over the homology of the framed little 2-discs operad, but by
formality this is the same.

We can realize this at the spectra level as well. It is a result of Salvatore and Gruher that given a fiberwise
monoid E over M that carries a fiberwise action of E,), then E~7™ has the structure of a E, -ring spectrum. But I we
have just mentioned that on homology level, string topology carries an E,-structure. Cohen-Jones remedy this by
constructing an explicity action of the cactus operad on LM~ which is homotopy equivalent to the framed discs
operad. Moreover, one can show that this induces the correct E, structure on homology.
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