The string topology product

Brian Williams

October 20, 2013

Today I'm going to define the product which gives rise to the structure called string topology. It is a product defined on the homology of the free loop space of a manifold. We will discuss some algebraic structures this product exhibits.

Fix a smooth, closed, orientable n-manifold M. The main object of study is the free loop space of M, define by

$$
L M:=\operatorname{Map}\left(S^{1}, M\right)
$$

where we take piecewise smooth maps. Poincaré dual to the cup product on M is the so-called intersection product

$$
H_{p}(M) \times H_{q}(M) \rightarrow H_{p+q-n}(M)
$$

which can be interpreted geometrically as follows. A p-chain can be represented by a p-dimensional submanifold P. Similarly a q-chain is represented by Q. We can perturb P, Q so as to make their intersection transverse. Then a standard theorem in differential topology says that $P \cap Q$ is $p+q-n$ dimension submanifold of M, hence determines a chain. Passing to homology this all is well defined and reproduces the above product.

1 The product

There are a couple of ways to define the aforementioned product. Originally, it was defined by Chas and Sullivan as a type of intersection product. Cohen and Jones came up with a definition that passes through the so-called Pontryagin-Thom collapse map. Furthermore, they extended this to a product on a related spectrum and upon taking homology realizes the original string product.

1.1 Via the intersection product

Here we discuss the original definitoin of the string product a la Chas-Sullivan. We consider $C_{*}(L M)$. Each loop has a marked point, namely the image of $0 \in S^{1}$. Consider $\alpha \in C_{p}(L M)$ and $\beta \in C_{q}(L M)$. The set of marked points of these chains can be viewed as dimension p, q submanifolds of M, i.e p, q-chains on M. We can intersect these to get a $p+q-n$ chain γ on M. Along this chain, the marked points of α, β coincide, so we can consder forming a loop by traversing α then β at each point of γ. This defined a $p+q-n$-chain of $L M$. On homology we denote this product by

$$
\circ: H_{p}(L M) \times H_{q}(L M) \rightarrow H_{p+q-n}(L M) .
$$

Before talking about any algebraic structures, let's go over an equivalent construction of o .

1.2 Via Thom collapse

Let's recall some general notions about Thom spaces/spectra. Let $i: N \hookrightarrow M$ be a k-dimensional submanifold. Take a tubular neighborhood around N which we can identify with the total space of the normal bundle to the embedding denoted ν_{N}. Define the map

$$
\tau: M \rightarrow v_{i} \cup\{\infty\},\left.\tau\right|_{v_{i}}=\operatorname{id}_{v_{i}},\left.\tau\right|_{M \backslash \nu_{i}}=\infty .
$$

Notice that $v_{i} \cup \infty$ is nothing but the the Thom space $\operatorname{Th}\left(\nu_{N}\right)$. So we are really producing a map

$$
\tau: M \rightarrow \operatorname{Th}\left(v_{i}\right) .
$$

Applying homology we get

$$
i_{!}: H_{p}(N) \xrightarrow{\tau} H_{p}\left(\operatorname{Th}\left(v_{i}\right)\right) \xrightarrow[\simeq]{\text { Thom }} H_{q-n+k}(N)
$$

where we have postcomposed with the Thom isomorphism. Such a "wrong-way" map is called an Umkher map.
Example 1.1. Lets consider the embedding

$$
\Delta: M \hookrightarrow M \times M
$$

so that $\nu_{\Delta} \simeq T M$. The induced map

$$
\Delta_{!}: H_{q}(M \times M) \rightarrow H_{q-d}(M)
$$

is just the intersection product discussed above.
We can talk about some stringy stuff again. Consider the pull-back space

$$
X=L M \times_{M} L M
$$

This space comes equipped with an obvious map $\gamma: X \rightarrow L M$ which can be viewed as extending the usual product on ΩM. X can also be viewed as the mapping space of figure eights into M. It also fits into the pull-back square

Now $L M$ is certainly not an infinite dimensional manifold. Nevertheless, one can see that the map ev: $L M \rightarrow M$ is a (locally trivial) fibre bundle. Since the square is a pull-back, we can therefore view $X \rightarrow L M \times L M$ as a codimension n embedding. Namely, we can take tubular neighborhoods, and it turns out that

$$
\nu_{\widetilde{\Delta}} \simeq \mathrm{ev}^{*} \nu_{\Delta} \simeq \mathrm{ev}^{*} T M
$$

So we get a Thom collapse map as above

$$
\tau_{\tilde{\Delta}}: L M \times L M \rightarrow X^{\mathrm{ev}^{*} T M}
$$

Combining all this we get
Theorem 1.1. There is a product

$$
\circ: H_{*}(L M) \times H_{*}(L M) \longrightarrow H_{*}(L M \times L M) \xrightarrow{\widetilde{\Delta}_{!}} H_{*-d}(X) \xrightarrow{\gamma_{*}} M
$$

that coincides with the Chas-Sullivan product mentioned above.
Remark. Nothing was special about ordinary homology here. This works just as well for any multiplicative generalized cohomology theory b_{*} so long as M is appropriately oriented.

We now explain how to realize this product as coming from the ring structure on an associated ring spectrum. For this we will need a "twisted" version of the Thom collapse map. Let ζ be a vector bundle over M. The embedding $N \hookrightarrow M$ extends to an embedding of total spaces of bundles via pull-back:

Then $\nu_{\tilde{i}} \simeq i^{*} \oplus \nu_{i}$ so that the Thom collapse map has the form

This construction actually works for any virtual bundle over M. Suppose $\zeta=-E$ where E is some rank k bundle over M. We form the Thom spectrum $\operatorname{Th}(\zeta)$ over M as follows. Choose an integer k^{\prime} such that $E \hookrightarrow$ $M \times \mathbb{R}^{k+k^{\prime}}$ and let E^{\perp} be the k^{\prime}-dimensional orthogonal complement taken in $\mathbb{R}^{k+k^{\prime}}$. Define the spectrum as

$$
\operatorname{Th}(\zeta)=\operatorname{Th}(-E)=\Sigma^{-\left(k+k^{\prime}\right)} \operatorname{Th}\left(E^{\perp}\right)
$$

In this setting the Thom isomorphism takes the form

$$
H_{*}(\operatorname{Th}(-E)) \simeq H_{*+k}(M)
$$

Example 1.2. Take $\zeta=-T M \times-T M$ and the diagonal embedding $M \hookrightarrow M \times M$. Then the induced map

Atiyah showed that $\operatorname{Th}(-T M)$ is actually the Spanier-Whitehead dual of M with a disjoint basepoint added. Moroever, one can check that the above product just gives Spanier-Whitehead dual of $\Delta: M \rightarrow M \times M$.

Again consider diagram (1). What we do now is pull back the virtual bundle $-T M \times-T M$ to $L M \times L M$, and twist by this. The relevant collapse map is

$$
(L M \times L M)^{(\mathrm{ev} \times \mathrm{ev})^{*}(-T M \times-T M)} \longrightarrow X^{\mathrm{ev}^{*} T M \oplus \mathrm{ev}^{*}\left(\Delta^{*}(-T M \times-T M)\right)}
$$

But, $\Delta^{*}(-T M \times-T M)=-2 T M$, so we have a map

$$
L M^{-T M} \wedge L M^{-T M} \longrightarrow X^{-T M}
$$

where we drop pulling back by ev* for notational convenience. The map $\gamma: X \rightarrow L M$ extends to a map of Thom spectra

$$
X^{-T M} \rightarrow L M^{-T M}
$$

and post-composing with this we get the product

$$
L M^{-T M} \wedge L M^{-T M} \rightarrow L M^{-T M}
$$

Taking homology and applying appropriate Thom isomoprhisms this reproduces the above product.
What all of this says is that $L M^{-T M}=\mathrm{Th}(-T M)$ is a ring spectrum. Morally, and rigourously proven by ChasSullivan, the ordinary string product plays nicely with intersection products and the standard loop product on ΩM_{+}. This manifests itself at the spectrum level as the existence of ring maps

$$
L M^{-T M} \rightarrow M^{-T M}
$$

and

$$
\Sigma^{\infty}\left(\Omega M_{+}\right) \rightarrow L M^{-T M}
$$

The first map is simpy induced by evaluation. The second map is induced by the fibration:

and comes from an appropriate Thom collapse map. Namely pulling back the tangent bundle across the fibration.

1.3 Algebraic structure

It is clear that o provides the structure of an associative, commutative, graded algebra on

$$
\mathbb{H}_{*}(M):=H_{*-d}(L M)=H_{*}(L M)[d]
$$

There is slightly more structure here which we mention now.
The original structure that Chas-Sullivan produce is a so-called Batalin-Vilkovisky (BV-) algebra on $\mathbb{H}_{*}(M)$. This algebraic structure crops up everywhere in mathematical physics and is related to the framed little 2-discs operad. Namely it is a result of Getzler that there is a bijective correspondence between BV algebras and algebras over the framed little 2-discs operad E_{2}. Actually, its an algebra over the homology of the framed little 2-discs operad, but by formality this is the same.

We can realize this at the spectra level as well. It is a result of Salvatore and Gruher that given a fiberwise monoid E over M that carries a fiberwise action of E_{n}, then $E^{-T M}$ has the structure of a E_{n}-ring spectrum. But I we have just mentioned that on homology level, string topology carries an E_{2}-structure. Cohen-Jones remedy this by constructing an explicity action of the cactus operad on $L M^{-T M}$, which is homotopy equivalent to the framed discs operad. Moreover, one can show that this induces the correct E_{2} structure on homology.

