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Today I’m going to define the product which gives rise to the structure called string topology. It is a product
defined on the homology of the free loop space of a manifold. We will discuss some algebraic structures this product
exhibits.

Fix a smooth, closed, orientable n-manifold M . The main object of study is the free loop space of M , define by

LM :=Map(S1, M )

where we take piecewise smooth maps. Poincaré dual to the cup product on M is the so-called intersection product

Hp (M )×Hq (M )→Hp+q−n(M )

which can be interpreted geometrically as follows. A p-chain can be represented by a p-dimensional submanifold
P . Similarly a q -chain is represented by Q. We can perturb P,Q so as to make their intersection transverse. Then a
standard theorem in differential topology says that P∩Q is p+q−n dimension submanifold of M , hence determines
a chain. Passing to homology this all is well defined and reproduces the above product.

1 The product

There are a couple of ways to define the aforementioned product. Originally, it was defined by Chas and Sullivan
as a type of intersection product. Cohen and Jones came up with a definition that passes through the so-called
Pontryagin-Thom collapse map. Furthermore, they extended this to a product on a related spectrum and upon
taking homology realizes the original string product.

1.1 Via the intersection product

Here we discuss the original definitoin of the string product a la Chas-Sullivan. We consider C∗(LM ). Each loop
has a marked point, namely the image of 0 ∈ S1. Consider α ∈Cp (LM ) and β ∈Cq (LM ). The set of marked points
of these chains can be viewed as dimension p, q submanifolds of M , i.e p, q -chains on M . We can intersect these to
get a p + q − n chain γ on M . Along this chain, the marked points of α,β coincide, so we can consder forming a
loop by traversing α thenβ at each point of γ . This defined a p+ q−n-chain of LM . On homology we denote this
product by

◦ : Hp (LM )×Hq (LM )→Hp+q−n(LM ).

Before talking about any algebraic structures, let’s go over an equivalent construction of ◦.

1.2 Via Thom collapse

Let’s recall some general notions about Thom spaces/spectra. Let i : N ,→ M be a k-dimensional submanifold.
Take a tubular neighborhood around N which we can identify with the total space of the normal bundle to the
embedding denoted νN . Define the map

τ : M → νi ∪{∞} , τ|νi = idνi , τ|M\νi =∞.

Notice that νi ∪∞ is nothing but the the Thom space Th(νN ). So we are really producing a map

τ : M →Th(νi ).
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Applying homology we get

i! : Hp (N )
τ // Hp (Th(νi ))

Thom
'
// Hq−n+k (N )

where we have postcomposed with the Thom isomorphism. Such a “wrong-way” map is called an Umkher map.

Example 1.1. Lets consider the embedding
∆ : M ,→M ×M

so that ν∆ ' T M . The induced map
∆! : Hq (M ×M )→Hq−d (M )

is just the intersection product discussed above.

We can talk about some stringy stuff again. Consider the pull-back space

X = LM ×M LM .

This space comes equipped with an obvious map γ : X → LM which can be viewed as extending the usual product
on ΩM . X can also be viewed as the mapping space of figure eights into M . It also fits into the pull-back square

X
e∆ //

ev

��

LM × LM

ev×ev
��

M ∆ // M ×M .

(1)

Now LM is certainly not an infinite dimensional manifold. Nevertheless, one can see that the map ev : LM →M is a
(locally trivial) fibre bundle. Since the square is a pull-back, we can therefore view X → LM ×LM as a codimension
n embedding. Namely, we can take tubular neighborhoods, and it turns out that

ν
e∆ ' ev∗ν∆ ' ev∗T M .

So we get a Thom collapse map as above

τ
e∆ : LM × LM →X ev∗T M .

Combining all this we get

Theorem 1.1. There is a product

◦ : H∗(LM )×H∗(LM ) // H∗(LM × LM )
e∆! // H∗−d (X )

γ∗ // M .

that coincides with the Chas-Sullivan product mentioned above.

Remark. Nothing was special about ordinary homology here. This works just as well for any multiplicative gener-
alized cohomology theory h∗ so long as M is appropriately oriented.

We now explain how to realize this product as coming from the ring structure on an associated ring spectrum.
For this we will need a “twisted” version of the Thom collapse map. Let ζ be a vector bundle over M . The
embedding N ,→M extends to an embedding of total spaces of bundles via pull-back:

i∗ζ
ei //

��

ζ

��

N i // M .
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Then ν
ei ' i∗⊕ νi so that the Thom collapse map has the form

ξ ∪{∞}
τζ
// ν(i∗ζ )∪{∞}

Th(ζ ) // Th(i∗ζ ⊕ νi ).

This construction actually works for any virtual bundle over M . Suppose ζ = −E where E is some rank k
bundle over M . We form the Thom spectrum Th(ζ ) over M as follows. Choose an integer k ′ such that E ,→
M ×Rk+k ′ and let E⊥ be the k ′-dimensional orthogonal complement taken in Rk+k ′ . Define the spectrum as

Th(ζ ) =Th(−E) = Σ−(k+k ′)Th(E⊥).

In this setting the Thom isomorphism takes the form

H∗(Th(−E)) ' H∗+k (M ).

Example 1.2. Take ζ =−T M ×−T M and the diagonal embedding M ,→M ×M . Then the induced map

(M ×M )−T M×−T M τ //

'
��

M T M⊕∆∗(−T M×−T M )

'
��

Th(−T M )∧Th(−T M ) // Th(−T M ).

Atiyah showed that Th(−T M ) is actually the Spanier-Whitehead dual of M with a disjoint basepoint added. Mo-
roever, one can check that the above product just gives Spanier-Whitehead dual of∆ : M →M ×M .

Again consider diagram (1). What we do now is pull back the virtual bundle −T M ×−T M to LM × LM , and
twist by this. The relevant collapse map is

(LM × LM )(ev×ev)∗(−T M×−T M ) // X ev∗T M⊕ev∗(∆∗(−T M×−T M )).

But,∆∗(−T M ×−T M ) =−2T M , so we have a map

LM−T M ∧ LM−T M // X−T M

where we drop pulling back by ev∗ for notational convenience. The map γ : X → LM extends to a map of Thom
spectra

X−T M → LM−T M

and post-composing with this we get the product

LM−T M ∧ LM−T M → LM−T M .

Taking homology and applying appropriate Thom isomoprhisms this reproduces the above product.
What all of this says is that LM−T M = Th(−T M ) is a ring spectrum. Morally, and rigourously proven by Chas-

Sullivan, the ordinary string product plays nicely with intersection products and the standard loop product on
ΩM+. This manifests itself at the spectrum level as the existence of ring maps

LM−T M →M−T M

and
Σ∞(ΩM+)→ LM−T M .

The first map is simpy induced by evaluation. The second map is induced by the fibration:

ΩM+ //

��

LM

��

{∗} // M

and comes from an appropriate Thom collapse map. Namely pulling back the tangent bundle across the fibration.
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1.3 Algebraic structure

It is clear that ◦ provides the structure of an associative, commutative, graded algebra on

H∗(M ) :=H∗−d (LM ) =H∗(LM )[d].

There is slightly more structure here which we mention now.
The original structure that Chas-Sullivan produce is a so-called Batalin-Vilkovisky (BV-) algebra onH∗(M ). This

algebraic structure crops up everywhere in mathematical physics and is related to the framed little 2-discs operad.
Namely it is a result of Getzler that there is a bijective correspondence between BV algebras and algebras over the
framed little 2-discs operad E2. Actually, its an algebra over the homology of the framed little 2-discs operad, but by
formality this is the same.

We can realize this at the spectra level as well. It is a result of Salvatore and Gruher that given a fiberwise
monoid E over M that carries a fiberwise action of En , then E−T M has the structure of a En -ring spectrum. But I we
have just mentioned that on homology level, string topology carries an E2-structure. Cohen-Jones remedy this by
constructing an explicity action of the cactus operad on LM−T M , which is homotopy equivalent to the framed discs
operad. Moreover, one can show that this induces the correct E2 structure on homology.
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