Math 131-H - Homework 1 Solutions

1. (a) We know that $\log (x) \leq x-1$ for all $x>0$. In particular, we can replace x by $1 / x$, because when x is greater than $0,1 / x$ is also greater than 0 . Therefore

$$
\begin{aligned}
\log (1 / x) & \leq 1 / x-1 \\
\Longrightarrow-\log (x) & \leq 1 / x-1 \\
\Longrightarrow \log (x) & \geq 1-1 / x
\end{aligned}
$$

(b) From part (a) we know that $1-1 / x \leq \log (x) \leq x-1$ for all $x>0$. We'll use this to find upper and lower bounds for the function $\log (1+x) / x$. First

$$
\begin{aligned}
\log (x) & \leq x-1 \\
\Longrightarrow \log (1+x) & \leq(1+x)-1=x \\
\Longrightarrow \frac{\log (1+x)}{x} & \leq x / x=1
\end{aligned}
$$

That's an upper bound. Using the other inequality:

$$
\begin{aligned}
\log (x) & \geq 1-1 / x \\
\Longrightarrow \log (1+x) & \geq 1-\frac{1}{1+x} \\
& =\frac{1+x}{1+x}-\frac{1}{1+x} \\
& =\frac{x}{1+x} \\
\Longrightarrow \frac{\log (1+x)}{x} & \geq \frac{1}{1+x}
\end{aligned}
$$

So we've shown that

$$
\frac{1}{1+x} \leq \frac{\log (1+x)}{x} \leq 1
$$

for all $x>0$. To apply the squeeze theorem, we only need to observe that the two limits $\lim _{x \rightarrow 0} \frac{1}{1+x}$ and $\lim _{x \rightarrow 0} 1$ are both equal to 1 - the squeeze theorem then tells us that $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$ also.
2. (a) We will use the fact that we were given: that there exists a positive integer n such that $b-a>1 / n$. That means that $n b-n a>1$, or to say it another way, the interval ($n a, n b$) has length greater than 1 . Because the distance between any two consecutive integers on the number line is 1 , and the interval ($n a, n b$) has length greater than 1 , that means there is some integer m in the interval ($n a, n b$).
Finally, because m is in $(n a, n b)$, that means m / n is in (a, b). The number m / n is rational, so we are done.
(b) We just need to notice that a number y is in the interval (a, b) if and only if the number $y-\sqrt{2}$ is in the interval $(a-\sqrt{2}, b-\sqrt{2})$. To put it another way, a number $x+\sqrt{2}$ is in the interval (a, b) if and only if the number x is in the interval $(a-\sqrt{2}, b-\sqrt{2})$.
By part (a), there is a rational number x in any interval. In particular there is a rational number x in the interval $(a-\sqrt{2}, b-\sqrt{2})$. Therefore the number $x+\sqrt{2}$ is in the interval (a, b) for any $a<b$. We're given that $x+\sqrt{2}$ is irrational, so we are done.
(c) Let x_{0} be any real number: we will show that the limit of $i(x)$ does not exist at $x=x_{0}$. We let $\varepsilon=1 / 2$, and we'll show that $f(x)$ cannot be made to stay within ε of any number: no matter how small an interval around x_{0} we look at.
For any positive number δ, the interval $\left(x_{0}, x_{0}+\delta\right)$ contains a rational number r by part (a), and it contains an irrational number s by part (b). That means that in the interval ($x_{0}, x_{0}+\delta$) there is a value r where $i(r)=1$, and a value s where $i(s)=0$. So the function i does not remain within $\varepsilon=1 / 2$ of any value, and therefore the limit does not exist.

