Math 131-H - Homework 2 Solutions

1. (a) The derivative of the function $f(x)=x^{2} / 4 a$ is $f^{\prime}(x)=x / 2 a$, so the tangent line at the point $\left(x_{0}, f\left(x_{0}\right)\right)$ has equation

$$
\begin{aligned}
y-\frac{x_{0}^{2}}{4 a} & =\frac{x_{0}}{2 a}\left(x-x_{0}\right) \\
y & =\frac{x_{0}}{2 a} a-\frac{x_{0}^{2}}{4 a}
\end{aligned}
$$

with y-intercept $-\frac{x_{0}^{2}}{4 a}$.
(b) First we'll compute the square of the distance from $\left(x_{0}, f\left(x_{0}\right)\right)$ to the focus $(0, a)$:

$$
\begin{aligned}
x_{0}^{2}+\left(f\left(x_{0}\right)-a\right)^{2} & =x_{0}^{2}+\left(\frac{x_{0}^{2}}{4 a}-a\right)^{2} \\
& =x_{0}^{2}+\frac{x_{0}^{4}}{16 a^{2}}-\frac{x_{0}^{2}}{2}+a^{2} \\
& =\frac{x_{0}^{4}}{16 a^{2}}+\frac{x_{0}^{2}}{2}+a^{2} .
\end{aligned}
$$

Now we'll compute the square of the distance from from the y-intercept $\left(0,-\frac{x_{0}^{2}}{4 a}\right)$ to the focus $(0, a)$. It is nothing but

$$
\left(a+\frac{x_{0}^{2}}{4 a}\right)^{2}=\frac{x_{0}^{4}}{16 a^{2}}+\frac{x_{0}^{2}}{2}+a^{2}
$$

so the two distances are equal, and the triangle is isosceles.
(c) Consider the following picture, where the line through B and D is the tangent line to the curve at $\left(x_{0}, f\left(x_{0}\right)\right)$:

Because the triangle $A B C$ is isosceles, the angles Angle $(A B C)$ and Angle $(B C A)$ are equal. Because the lines $A B$ and $E C$ are parallel (they are both vertical lines), the angles Angle $(A B C)$ and Angle $(E C D)$ are also equal. Therefore the angles Angle $(B C A)$ and Angle $(E C D)$ are equal, which is the reflection property that we were looking for.
2. Let's start by finding the equation for a tangent line to the curve $y=1 / x$ at a point on the curve, say the point $(w, 1 / w)$ for some w. The derivative of $1 / x$ is $-1 / x^{2}$, so the tangent line has equation

$$
\begin{aligned}
y-1 / w & =-1 / w^{2}(x-w) \\
\text { or } y & =-x / w^{2}+2 / w .
\end{aligned}
$$

Now, take a fixed point $\left(x_{0}, y_{0}\right)$ somewhere in the plane. This point lies on the tangent line to the curve at $(w, 1 / w)$ if

$$
\begin{aligned}
y_{0} & =-x_{0} / w^{2}+2 / w \\
\text { or } y_{0} w^{2} & =-x_{0}+2 w \\
\text { or } y_{0} w^{2}-2 w+x_{0} & =0
\end{aligned}
$$

We need to figure out how many tangent lines pass through the point $\left(x_{0}, y_{0}\right)$, which means, how many solutions does this equation have, when we solve for w ? This is a quadratic equation in w, so it has solutions

$$
w=\frac{1}{y_{0}}\left(1 \pm \sqrt{1-x_{0} y_{0}}\right)
$$

(a) If $x_{0} y_{0}>1$, then $1-x_{0} y_{0}<0$, so there are no real solutions to the equation for w, and no tangent lines through the point $\left(x_{0}, y_{0}\right)$.
(b) If $x_{0} y_{0}=1$ then $1-x_{0} y_{0}=0$, so there is one solution for w, namely $w=1 / y_{0}$. So there is one tangent line through the point, with equation

$$
\begin{aligned}
y & =-y_{0}^{2} x+2 y_{0} \\
\text { or } y & =-x / x_{0}^{2}+2 / x_{0}
\end{aligned}
$$

(c) If $0<x_{0} y_{0}<1$ then $0<1-x_{0} y_{0}<1$, so there are two solutions for w. Therefore there are two tangent lines through the point, with equation

$$
y=-x / w^{2}+2 / w
$$

where $w=\frac{1}{y_{0}}\left(1 \pm \sqrt{1-x_{0} y_{0}}\right)$.
(d) Here either x_{0} or y_{0} is equal to 0 , which means instead of a quadratic equation for w, we have a linear equation for w, either $w=x_{0} / 2$ or $w=y_{0} / 2$. So there is one tangent line through the point $\left(x_{0}, y_{0}\right)$ with equation

$$
y=-4 x / x_{0}^{2}+1 / x_{0}
$$

or

$$
y=-4 x / y_{0}^{2}+1 / y_{0}
$$

(e) If $x_{0}=y_{0}=0$ then the equation becomes $w=0$. Since the function $f(x)$ is not defined at $x=0$, there is no tangent line through $(0,0)$.
(f) Finally, if $x_{0} y_{0}<0$ then $1-x_{0} y_{0}>1$, so there are two solutions for w, therefore there are two tangent lines through the point, with the same equation as in (c).

