Math 131-H - Homework 4 Solutions

1. (a) Using the quotient rule,

$$
\tanh (x)^{\prime}=\left(\cosh (x)^{2}-\sinh (x)^{2}\right) / \cosh ^{2}(x)=\operatorname{sech}^{2}(x)
$$

Now, by implicit differentiation

$$
\begin{aligned}
y & =\operatorname{arctanh}(x) \\
x & =\tanh (y) \\
\frac{\mathrm{d} x}{\mathrm{~d} x} & =\frac{\mathrm{d}}{\mathrm{~d} x}(\tanh (y)) \\
1 & =y^{\prime} \operatorname{sech}^{2}(y) \\
\text { so } y^{\prime} & =1 / \operatorname{sech}^{2}(y) \\
& =1 / \operatorname{sech}^{2}(\operatorname{arctanh}(x)) \\
& =\frac{1}{1-\tanh (\operatorname{arctanh}(x))^{2}} \\
& =\frac{1}{1-x^{2}}
\end{aligned}
$$

(b) Similarly, using the quotient rule

$$
\operatorname{coth}(x)^{\prime}=\left(\sinh (x)^{2}-\cosh (x)^{2}\right) / \sinh ^{2}(x)=-\operatorname{csch}^{2}(x)
$$

Now, by implicit differentiation

$$
\begin{aligned}
y & =\operatorname{arccoth}(x) \\
x & =\operatorname{coth}(y) \\
\frac{\mathrm{d} x}{\mathrm{~d} x} & =\frac{\mathrm{d}}{\mathrm{~d} x}(\operatorname{coth}(y)) \\
1 & =-y^{\prime} \operatorname{csch}^{2}(y) \\
\text { so } y^{\prime} & =-1 / \operatorname{csch}^{2}(y) \\
& =-1 / \operatorname{csch}^{2}(\operatorname{arccoth}(x)) \\
& =-\frac{1}{\operatorname{coth}(\operatorname{arccoth}(x))^{2}-1} \\
& =\frac{1}{1-x^{2}} .
\end{aligned}
$$

(c) Notice that these two functions are equal, yet $\operatorname{arctanh}(x)$ and $\operatorname{arccoth}(x)$ don't differ by a constant. The reason is that $\operatorname{arctanh}(x)$ is only defined for $-1<x<1$ and $\operatorname{arccoth}(x)$ is only defined for $x>1$ and $x<-1$, so the domains of definition of the two functions don't overlap.
2. (a) If $\zeta=\operatorname{arctanh}(v / c)$ then $v=c \tanh (\zeta)$. Plug this into the equations for $x_{\text {new }}$ and $t_{\text {new }}$. First, we calculate that

$$
\gamma(v)=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\tanh ^{2}(\zeta)}}=\frac{1}{\operatorname{sech}(\zeta)}=\cosh (\zeta)
$$

Now, we get

$$
\begin{aligned}
x_{\text {new }} & =\cosh (\zeta)(x+c \tanh (\zeta) t) \\
& =\cosh (\zeta) x+c \sinh (\zeta) t \\
t_{\text {new }} & =\cosh (\zeta)(t+\tanh (\zeta) x / c) \\
& =\cosh (\zeta) t+\sinh (\zeta) x / c
\end{aligned}
$$

(b) Using the chain rule, we calculate

$$
\begin{aligned}
u_{\text {new }} & =\frac{\mathrm{d} x_{\text {new }}}{\mathrm{d} t_{\text {new }}} \\
& =\frac{\mathrm{d} x_{\text {new }}}{\mathrm{d} t} \frac{\mathrm{~d} t}{\mathrm{~d} t_{\text {new }}} \\
& =\frac{\mathrm{d} x_{\text {new }}}{\mathrm{d} t}\left(\frac{\mathrm{~d} t_{\text {new }}}{\mathrm{d} t}\right)^{-1}
\end{aligned}
$$

So, taking those terms individually, and using that v and c are constant,

$$
\begin{aligned}
\frac{\mathrm{d} x_{\text {new }}}{\mathrm{d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}(\gamma(v)(x+v t)) \\
& =\gamma(v)\left(\frac{\mathrm{d} x}{\mathrm{~d} t}+v \frac{\mathrm{~d} t}{\mathrm{~d} t}\right) \\
& =\gamma(v)(u+v) \\
\text { and } \frac{\mathrm{d} t_{\text {new }}}{\mathrm{d} t} & =\gamma(v)\left(\frac{\mathrm{d} t}{\mathrm{~d} t}+v / c^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}\right) \\
& =\gamma(v)\left(1+u v / c^{2}\right)
\end{aligned}
$$

So altogether,

$$
u_{\mathrm{new}}=\frac{u+v}{1+u v / c^{2}}
$$

(c) If we differentiate $u_{\text {new }}$ with respect to u we get

$$
\frac{\mathrm{d} u_{\text {new }}}{\mathrm{d} u}=\frac{\left(1+u v / c^{2}\right)-v / c^{2}(u+v)}{\left(1+u v / c^{2}\right)^{2}}
$$

so if we plug in $v=c$ we're left with $\frac{1+u / c-u / c-1}{(1+u / c)^{2}}=0$. Alternatively, and more straightforwardly, we can plug in $v=c$ initially, to get

$$
u_{\text {new }}=\frac{u+c}{1+u / c}=\frac{c(u+c)}{c+u}=c
$$

which is constant, so its derivative is automatically zero.

