Math 131-H — Homework 6 Solutions

1. For this problem, we need to think of the integral as a function of ¢, so define
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b
GO = [ (1) - o2da.

We need to find the global minimum of the function G(c). So let’s find the critical points. So, compute
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So there is a single critical point at ¢ = fab f(x)dx. If we differentiate again, we find d?dc?G(c) = 2(b—a),
which is positive, so this critical point is indeed a minimum.
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Choose some z between 0 and 1. The mean value theorem says that there is some number ¢ between 0
and z, so that
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Because ¢ was between 0 and 1, that means
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and so
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By part (a), we know
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The integrals on the outside are easy to evaluate by thinking about the area as the combination of a
rectangle and a triangle, so we get that
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Now, that’s great for the lower bound, but we need something better to get the upper bound. Because
f(z) = e” is concave upwards, on the interval [0, 1] the graph of e” lies below the straight line from (0, 1)
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which implies that
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(a) We use the hint. First, note that 22_1
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(b) Again, we use the hint.
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(c) Using the definition of the integral as a limit of (left) Riemann sums, we get that
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=4+48/3=20/3.

—o(k+1)? — k* = n? - all other terms cancel. So



