Math 131-H - Homework 6 Solutions

1. For this problem, we need to think of the integral as a function of c, so define

$$
G(c)=\int_{a}^{b}(f(x)-c)^{2} \mathrm{~d} x .
$$

We need to find the global minimum of the function $G(c)$. So let's find the critical points. So, compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} c} G(c) & =\frac{\mathrm{d}}{\mathrm{~d} c} \int_{a}^{b}\left(f(x)^{2}-2 c f(x)+c^{2} \mathrm{~d} x\right. \\
& =\frac{\mathrm{d}}{\mathrm{~d} c}\left(\int_{a}^{b} f(x)^{2} \mathrm{~d} x\right)-2 \frac{\mathrm{~d}}{\mathrm{~d} c}\left(c \int_{a}^{b} f(x) \mathrm{d} x\right)+\frac{\mathrm{d}}{\mathrm{~d} c}\left(c^{2} \int_{a}^{b} \mathrm{~d} x\right) \\
& =0-2 \int_{a}^{b} f(x) \mathrm{d} x+2 c \int_{a}^{b} \mathrm{~d} x \\
& =-2 \int_{a}^{b} f(x) \mathrm{d} x+2 c(b-a) .
\end{aligned}
$$

So there is a single critical point at $c=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x$. If we differentiate again, we find $\mathrm{d}^{2} \mathrm{~d} c^{2} G(c)=2(b-a)$, which is positive, so this critical point is indeed a minimum.
2. (a) Choose some x between 0 and 1 . The mean value theorem says that there is some number c between 0 and x, so that

$$
e^{c}=\frac{e^{x}-1}{x} .
$$

Because c was between 0 and 1 , that means

$$
1 \leq \frac{e^{x}-1}{x} \leq e<3
$$

and so

$$
x+1 \leq e^{x}<3 x+1 .
$$

(b) By part (a), we know

$$
\int_{0}^{1}(x+1) \mathrm{d} x \leq \int_{0}^{1} e^{x} \mathrm{~d} x \leq \int_{0}^{1}(3 x+1) \mathrm{d} x .
$$

The integrals on the outside are easy to evaluate by thinking about the area as the combination of a rectangle and a triangle, so we get that

$$
3 / 2 \leq \int_{0}^{1} e^{x} \mathrm{~d} x \leq 5 / 2
$$

which implies that

$$
1<\int_{0}^{1} e^{x} \mathrm{~d} x<3
$$

Now, that's great for the lower bound, but we need something better to get the upper bound. Because $f(x)=e^{x}$ is concave upwards, on the interval $[0,1]$ the graph of e^{x} lies below the straight line from $(0,1)$ to $(1, e)$. The area under this straight line is $1+\frac{e-1}{2}$, so

$$
\int_{0}^{1} e^{x} \mathrm{~d} x \leq 1+\frac{e-1}{2}<2 .
$$

3. (a) We use the hint. First, note that $\sum_{k=0}^{n-1}(k+1)^{3}-k^{3}=n^{3}-$ all other terms cancel. So

$$
\begin{aligned}
n^{3} & =\sum_{k=0}^{n-1}(k+1)^{3}-k^{3} \\
& =\sum_{k=0}^{n-1} 3 k^{2}+3 k+1 \\
& =3 \sum_{k=0}^{n-1} k^{2}+3 \sum_{k=0}^{n-1} k+\sum_{k=0}^{n-1} 1 \\
& =3 \sum_{k=0}^{n-1} k^{2}+\frac{3 n(n-1)}{2}+n \\
\text { so } \sum_{k=0}^{n-1} k^{2} & =\frac{n^{3}}{3}-\frac{n(n-1)}{2}-\frac{n}{3} \\
& =\frac{n(n-1)(2 n-1)}{6}
\end{aligned}
$$

(b) Again, we use the hint.

$$
\begin{aligned}
n^{4} & =\sum_{k=0}^{n-1}(k+1)^{4}-k^{4} \\
& =\sum_{k=0}^{n-1} 4 k^{3}+6 k^{2}+4 k+1 \\
& =4 \sum_{k=0}^{n-1} k^{3}+6 \sum_{k=0}^{n-1} k^{2}+4 \sum_{k=0}^{n-1} k+\sum_{k=0}^{n-1} 1 \\
& =4 \sum_{k=0}^{n-1} k^{3}+n(n-1)(2 n-1)+n(n-1)+n \\
\text { so } \sum_{k=0}^{n-1} k^{3} & =\frac{n^{4}-n(n-1)(2 n-1)-n(n-1)-n}{4} \\
& =\frac{n^{2}(n-1)^{2}}{4} .
\end{aligned}
$$

(c) Using the definition of the integral as a limit of (left) Riemann sums, we get that

$$
\begin{aligned}
\int_{0}^{2} f(x) \mathrm{d} x & =\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} f\left(\frac{2 k}{n}\right) \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} \frac{16 k^{3}}{n^{4}}+\frac{8 k^{2}}{n^{3}} \\
& =\lim _{n \rightarrow \infty} \frac{4 n^{2}(n-1)^{2}}{n^{4}}+\frac{4 n(n-1)(2 n-1)}{3 n^{3}} \\
& =4+8 / 3=20 / 3
\end{aligned}
$$

