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Plan for Today

We'll start with a perspective on classical field theory via
“derived geometry" .

How to think about symmetry breaking from this perspective.
Main example: Yang—Mills—Higgs theory.

More exotic examples: “twisted supergravity” .

I'm going to discuss joint work with Owen Gwilliam
(arxiv.org/abs/2008.03599).


arxiv.org/abs/2008.03599

Symmetry Breaking in Physics

Main goal, understand the following idea.

In a classical field theory, there is a moduli space of “vacua”. If
one moves away from special “unstable” vacua the theory changes.

Typically it becomes less symmetrical, and massless particles can
“become massive”. Key example in physics: the gauge symmetry
breaking studied in the 1960s by



Classical Field Theory, Informally

Starting point to classical field theory:

A space ® of fields (e.g. space of smooth sections of a vector

bundle).
An S:d— R.
Classical field theory studies the of S. One way of

describing this geometrically is as an intersection.

Crit(S) = Graph(dS) N7+e ®.



Crit(S) = Graph(dS) N7«e ®.
This intersection will not be transverse. We will replace the critical

locus by a more refined notion from algebraic geometry.

Suppose X1 — Y < Xy are affine algebraic varieties, X; = Spec R;,
Y = SpecS. The fiber product is

X1 Xy Xo = Spec(R1 Xs Rz).
Definition
The fiber product of X; and X5 over Y is

X1 Xl{/ Xo = Spec(R1 ®% R2)

The derived fiber product “knows about how X; and X, intersect”,
e.g. the difference between transverse and non-transverse
intersections.



We would like to try to study
dCrit(S) = Graph(dS) x4 @,

but making this precise is tricky: ® is usually some kind of
infinite-dimensional topological vector space. We'll do something a
bit easier. If we choose a point x € Crit(S), we can study the

of x in dCrit(S). We can describe this

using linear algebral

Symmetry breaking will come in when we vary x. Because
dCrit(S) is not smooth, formal neighbourhoods of different points
can look quite different.



The BV Formalism

The BV formalism models the to dCrit(S). In
the derived setting the tangent space is a cochain complex!

Fix a Riemannian manifold X, a semisimple Lie algebra g and a
representation R. We'll also fix a g-invariant potential functional

V:R—> R,

the usual example is V/(r) = %(|r|> — m?)%. I'll write down a model
for the formal neighbourhood of the trivial solution to the
Yang—Mills—Higgs equations.

da* da(A) = (¢,dad)
da*da(¢) = =VV(9).



Roughly speaking, the looks like

oL, o , Where the operator D is given by the second Taylor
coefficient of the action functional. Let's explain the
Yang—Mills—Higgs example piece by piece.

| won't explain the general algorithm here, for more details see
sites.google.com/view/physical-mathematics-of-qfts/


sites.google.com/view/physical-mathematics-of-qfts/

Unpacking the Yang—Mills—Higgs Example

Q°(X,g) —4— Q1(X, g) =% Q3(X, g) —2— Q4 (X, g)

*d— m*

0(x; RY*T04(X; R)



Symmetry Breaking

Remember that we chose a classical solution x, and worked in a
formal neighbourhood around it. What if we vary x?

For example, in Yang—Mills—Higgs theory, consider a constant
function whose value ¢y is a critical point of V. So this means
|po|?> = m?, or ¢o = 0. The Taylor coefficients of the action
functional change, so the differential in the BV complex changes!



Suppose ¢g # 0 is a critical point of V. The Taylor expansion of
the action functional looks like

1
5 (SIdAI® + [del* + [@ol*|AI* — m?|6]* + (¢, #)°) +

The differential on the classical BV complex at ¢g deforms
correspondingly:

Q9(X, ) — 1 21X, g 12103 (X, g) —1 24(X, g)
QO(X; R)Cl}dﬁl“(x R)

where the diagonal arrows are proportional to ¢ and p: R — R is
the projection onto (Reo)* C R.



Suppose h C g is the stabilizer of ¢g, and decompose g into
h @ bt. Likewise decompose R into R @ (Repg)*.

Theorem
There is a deformation retract from the classical BV complex near
¢ onto the following complex.

Q0(X, ) —L— QI(X, h) — T Q3(X, h) —T— Q4(X,h)

Ql(X;bJ‘) dxd—m?x Q3(X;f)J‘)

d

QO(X; (Repo) - 2= 0A4(X; (Ro) ).



Electroweak Theory

For a standard example, suppose G = SU(2) & U(1), and suppose
R is the two dimensional defining representation of SU(2), with
U(1) acting with weight 1.

One chooses a non-zero critical point ¢g to perturb around so that
the symmetry is broken to h = u(1) C su(2) ® u(1) (embedded via
x = (h/2 - x,x)).

So b+ is 3-dimensional (spanned by the massive W, W_ and Z
bosons) and (R¢yg)* is 1-dimensional (spanned by the Higgs
boson).



Further Examples

More exotic examples arise when we study
Can model supergravity using gauge theories for Z /27Z- graded
extensions of the Poincaré group SO(4) x R*.

One of the fields g+ in this theory lives in Q9(R*; S.) where
S4 are the semispin representations of s0(4). This fields lives in
Z x 7./27-bidegree (—1,1): “bosonic ghost”. Study symmetry
breaking where this field g is given a non-zero value.

One can show that this theory at non-zero g4 is . In
particular this means it is easier to quantize.

Conjecture (E-Williams)

This “twisted supergravity theory” is equivalent to a theory
modelling holomorphic symplectic vector fields, whose quantization
we constructed in arziv. org/abs/2008. 02302.


arxiv.org/abs/2008.02302

Thanks for listening!



