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Plan for Today

• We’ll start with a perspective on classical field theory via
“derived geometry”.

• How to think about symmetry breaking from this perspective.
Main example: Yang–Mills–Higgs theory.

• More exotic examples: “twisted supergravity”.

I’m going to discuss joint work with Owen Gwilliam
(arxiv.org/abs/2008.03599).

arxiv.org/abs/2008.03599


Symmetry Breaking in Physics

Main goal, understand the following idea.

In a classical field theory, there is a moduli space of “vacua”. If
one moves away from special “unstable” vacua the theory changes.

Typically it becomes less symmetrical, and massless particles can
“become massive”. Key example in physics: the gauge symmetry
breaking studied in the 1960s by Higgs, Anderson, Englert–Brout,
Guralnik–Hagen–Kibble.



Classical Field Theory, Informally

Starting point to classical field theory:

• A space Φ of fields (e.g. space of smooth sections of a vector
bundle).

• An action functional S : Φ→ R.

Classical field theory studies the critical locus of S . One way of
describing this geometrically is as an intersection.

Crit(S) = Graph(dS) ∩T∗Φ Φ.



Crit(S) = Graph(dS) ∩T∗Φ Φ.

This intersection will not be transverse. We will replace the critical
locus by a more refined notion from algebraic geometry.

Suppose X1 → Y ← X2 are affine algebraic varieties, Xi = SpecRi ,
Y = SpecS . The fiber product is

X1 ×Y X2 = Spec(R1 ⊗S R2).

Definition
The derived fiber product of X1 and X2 over Y is

X1 ×h
Y X2 = Spec(R1 ⊗L

S R2).

The derived fiber product “knows about how X1 and X2 intersect”,
e.g. the difference between transverse and non-transverse
intersections.



We would like to try to study

dCrit(S) = Graph(dS)×h
T∗Φ Φ,

but making this precise is tricky: Φ is usually some kind of
infinite-dimensional topological vector space. We’ll do something a
bit easier. If we choose a point x ∈ Crit(S), we can study the
formal neighbourhood of x in dCrit(S). We can describe this
using linear algebra!

Symmetry breaking will come in when we vary x . Because
dCrit(S) is not smooth, formal neighbourhoods of different points
can look quite different.



The BV Formalism

The BV formalism models the tangent space at x to dCrit(S). In
the derived setting the tangent space is a cochain complex!

Example: Yang–Mills–Higgs theory

Fix a Riemannian manifold X , a semisimple Lie algebra g and a
representation R. We’ll also fix a g-invariant potential functional

V : R → R,

the usual example is V (r) = 1
4 (|r |2 −m2)2. I’ll write down a model

for the formal neighbourhood of the trivial solution to the
Yang–Mills–Higgs equations.

dA ∗ dA(A) = 〈φ, dAφ〉
dA ∗ dA(φ) = −∇V (φ).



Roughly speaking, the classical BV complex looks like

Φ
D // Φ∗ , where the operator D is given by the second Taylor

coefficient of the action functional. Let’s explain the
Yang–Mills–Higgs example piece by piece.

I won’t explain the general algorithm here, for more details see
sites.google.com/view/physical-mathematics-of-qfts/

sites.google.com/view/physical-mathematics-of-qfts/


Unpacking the Yang–Mills–Higgs Example

Ω0(X , g)
d // Ω1(X , g)

d∗d // Ω3(X , g)
d // Ω4(X , g)

Ω0(X ;R)
d∗d−m2∗

// Ω4(X ;R)



Symmetry Breaking

Remember that we chose a classical solution x , and worked in a
formal neighbourhood around it. What if we vary x?

For example, in Yang–Mills–Higgs theory, consider a constant
function whose value φ0 is a critical point of V . So this means
|φ0|2 = m2, or φ0 = 0. The Taylor coefficients of the action
functional change, so the differential in the BV complex changes!



Suppose φ0 6= 0 is a critical point of V . The Taylor expansion of
the action functional looks like

1

2
(−|dA‖2 + |dφ|2 + |φ0|2|A|2 −m2|φ|2 + 〈φ0, φ〉2) + · · · .

The differential on the classical BV complex at φ0 deforms
correspondingly:

Ω0(X , g)
d //

&&

Ω1(X , g)
d∗d+|φ0|2∗

//

&&

Ω3(X , g)
d // Ω4(X , g)

Ω0(X ;R)
d∗d−m2p

//

88

Ω4(X ;R)

88

where the diagonal arrows are proportional to φ0 and p : R → R is
the projection onto (Rφ0)⊥ ⊆ R.



Suppose h ⊆ g is the stabilizer of φ0, and decompose g into
h⊕ h⊥. Likewise decompose R into Rφ0 ⊕ (Rφ0)⊥.

Theorem
There is a deformation retract from the classical BV complex near
φ0 onto the following complex.

Ω0(X , h)
d // Ω1(X , h)

d∗d // Ω3(X , h)
d // Ω4(X , h)

Ω1(X ; h⊥)
d∗d−m2∗

// Ω3(X ; h⊥)

Ω0(X ; (Rφ0)⊥)
d∗d−m2∗

// Ω4(X ; (Rφ0)⊥).



Electroweak Theory

For a standard example, suppose G = SU(2)⊕U(1), and suppose
R is the two dimensional defining representation of SU(2), with
U(1) acting with weight 1.

One chooses a non-zero critical point φ0 to perturb around so that
the symmetry is broken to h = u(1) ⊆ su(2)⊕ u(1) (embedded via
x 7→ (h/2 · x , x)).

So h⊥ is 3-dimensional (spanned by the massive W+,W− and Z
bosons) and (Rφ0)⊥ is 1-dimensional (spanned by the Higgs
boson).



Further Examples

More exotic examples arise when we study supergravity theory.
Can model supergravity using gauge theories for Z/2Z-graded
extensions of the Poincaré group SO(4) nR4.

Idea: One of the fields q± in this theory lives in Ω0(R4; S±) where
S± are the semispin representations of so(4). This fields lives in
Z× Z/2Z-bidegree (−1, 1): “bosonic ghost”. Study symmetry
breaking where this field q± is given a non-zero value.

One can show that this theory at non-zero q± is holomorphic. In
particular this means it is easier to quantize.

Conjecture (E–Williams)

This “twisted supergravity theory” is equivalent to a theory
modelling holomorphic symplectic vector fields, whose quantization
we constructed in arxiv. org/ abs/ 2008. 02302 .

arxiv.org/abs/2008.02302


Thanks for listening!


