Gauge Symmetry Breaking via Derived Geometry Chris Elliott

March 10th, 2021

Plan for Today

- We'll start with a perspective on classical field theory via "derived geometry".
- How to think about symmetry breaking from this perspective.
 Main example: Yang-Mills-Higgs theory.
- More exotic examples: "twisted supergravity".

I'm going to discuss joint work with Owen Gwilliam (arxiv.org/abs/2008.03599).

Symmetry Breaking in Physics

Main goal, understand the following idea.

In a classical field theory, there is a moduli space of "vacua". If one moves away from special "unstable" vacua the theory changes.

Typically it becomes less symmetrical, and massless particles can "become massive". Key example in physics: the gauge symmetry breaking studied in the 1960s by Higgs, Anderson, Englert–Brout, Guralnik–Hagen–Kibble.

Classical Field Theory, Informally

Starting point to classical field theory:

- A space Φ of fields (e.g. space of smooth sections of a vector bundle).
- An action functional $S: \Phi \to \mathbb{R}$.

Classical field theory studies the critical locus of S. One way of describing this geometrically is as an intersection.

$$\operatorname{Crit}(S) = \operatorname{Graph}(\mathrm{d}S) \cap_{T^*\Phi} \Phi.$$

$$\operatorname{Crit}(S) = \operatorname{Graph}(\mathrm{d}S) \cap_{\mathcal{T}^*\Phi} \Phi.$$

This intersection will not be transverse. We will replace the critical locus by a more refined notion from algebraic geometry.

Suppose $X_1 \to Y \leftarrow X_2$ are affine algebraic varieties, $X_i = \operatorname{Spec} R_i$, $Y = \operatorname{Spec} S$. The fiber product is

$$X_1 \times_Y X_2 = \operatorname{Spec}(R_1 \otimes_S R_2).$$

Definition

The derived fiber product of X_1 and X_2 over Y is

$$X_1 \times_Y^h X_2 = \operatorname{Spec}(R_1 \otimes_S^{\mathbb{L}} R_2).$$

The derived fiber product "knows about how X_1 and X_2 intersect", e.g. the difference between transverse and non-transverse intersections.

We would like to try to study

$$\mathrm{dCrit}(S) = \mathrm{Graph}(\mathrm{d}S) \times_{T^*\Phi}^h \Phi,$$

but making this precise is tricky: Φ is usually some kind of infinite-dimensional topological vector space. We'll do something a bit easier. If we choose a point $x \in \operatorname{Crit}(S)$, we can study the formal neighbourhood of x in $\operatorname{dCrit}(S)$. We can describe this using linear algebra!

Symmetry breaking will come in when we vary x. Because $d\operatorname{Crit}(S)$ is not smooth, formal neighbourhoods of different points can look quite different.

The BV Formalism

The BV formalism models the tangent space at x to dCrit(S). In the derived setting the tangent space is a cochain complex!

Example: Yang-Mills-Higgs theory

Fix a Riemannian manifold X, a semisimple Lie algebra $\mathfrak g$ and a representation R. We'll also fix a $\mathfrak g$ -invariant potential functional

$$V\colon R\to\mathbb{R},$$

the usual example is $V(r) = \frac{1}{4}(|r|^2 - m^2)^2$. I'll write down a model for the formal neighbourhood of the trivial solution to the Yang–Mills–Higgs equations.

$$d_{A} * d_{A}(A) = \langle \phi, d_{A}\phi \rangle$$
$$d_{A} * d_{A}(\phi) = -\nabla V(\phi).$$

Roughly speaking, the classical BV complex looks like

 $\Phi \xrightarrow{D} \Phi^*$, where the operator D is given by the second Taylor coefficient of the action functional. Let's explain the Yang–Mills–Higgs example piece by piece.

I won't explain the general algorithm here, for more details see sites.google.com/view/physical-mathematics-of-qfts/

Unpacking the Yang-Mills-Higgs Example

$$\Omega^0(X,\mathfrak{g}) \stackrel{\mathrm{d}}{-\!\!\!-\!\!\!-} \Omega^1(X,\mathfrak{g}) \stackrel{\mathrm{d}*\mathrm{d}}{-\!\!\!-\!\!\!-} \Omega^3(X,\mathfrak{g}) \stackrel{\mathrm{d}}{-\!\!\!\!-\!\!\!-} \Omega^4(X,\mathfrak{g})$$

$$\Omega^0(X;R) \xrightarrow{\mathrm{d} + \mathrm{d} - m^2} \Omega^4(X;R)$$

Symmetry Breaking

Remember that we chose a classical solution x, and worked in a formal neighbourhood around it. What if we vary x?

For example, in Yang–Mills–Higgs theory, consider a constant function whose value ϕ_0 is a critical point of V. So this means $|\phi_0|^2=m^2$, or $\phi_0=0$. The Taylor coefficients of the action functional change, so the differential in the BV complex changes!

Suppose $\phi_0 \neq 0$ is a critical point of V. The Taylor expansion of the action functional looks like

$$\frac{1}{2}(-|\mathrm{d}A||^2+|\mathrm{d}\phi|^2+|\phi_0|^2|A|^2-m^2|\phi|^2+\langle\phi_0,\phi\rangle^2)+\cdots.$$

The differential on the classical BV complex at ϕ_0 deforms correspondingly:

where the diagonal arrows are proportional to ϕ_0 and $p: R \to R$ is the projection onto $(\mathbb{R}\phi_0)^{\perp} \subseteq R$.

Suppose $\mathfrak{h} \subseteq \mathfrak{g}$ is the stabilizer of ϕ_0 , and decompose \mathfrak{g} into $\mathfrak{h} \oplus \mathfrak{h}^{\perp}$. Likewise decompose R into $\mathbb{R}\phi_0 \oplus (\mathbb{R}\phi_0)^{\perp}$.

Theorem

There is a deformation retract from the classical BV complex near ϕ_0 onto the following complex.

$$\Omega^0(X,\mathfrak{h}) \stackrel{\mathrm{d}}{-\!\!\!-\!\!\!-\!\!\!-} \Omega^1(X,\mathfrak{h}) \stackrel{\mathrm{d}*\mathrm{d}}{-\!\!\!\!-\!\!\!\!-} \Omega^3(X,\mathfrak{h}) \stackrel{\mathrm{d}}{-\!\!\!\!-\!\!\!\!-} \Omega^4(X,\mathfrak{h})$$

$$\Omega^1(X; \mathfrak{h}^\perp) \xrightarrow{\mathrm{d}*\mathrm{d}-m^2*} \Omega^3(X; \mathfrak{h}^\perp)$$

$$\Omega^0(X; (\mathbb{R}\phi_0)^{\perp})^{\mathrm{d}} \stackrel{\mathrm{d}-m^2}{\longrightarrow} \Omega^4(X; (\mathbb{R}\phi_0)^{\perp}).$$

Electroweak Theory

For a standard example, suppose $G=\mathrm{SU}(2)\oplus\mathrm{U}(1)$, and suppose R is the two dimensional defining representation of $\mathrm{SU}(2)$, with $\mathrm{U}(1)$ acting with weight 1.

One chooses a non-zero critical point ϕ_0 to perturb around so that the symmetry is broken to $\mathfrak{h}=\mathrm{u}(1)\subseteq\mathfrak{su}(2)\oplus\mathrm{u}(1)$ (embedded via $x\mapsto (h/2\cdot x,x)$).

So \mathfrak{h}^{\perp} is 3-dimensional (spanned by the massive W_+,W_- and Z bosons) and $(\mathbb{R}\phi_0)^{\perp}$ is 1-dimensional (spanned by the Higgs boson).

Further Examples

More exotic examples arise when we study supergravity theory. Can model supergravity using gauge theories for $\mathbb{Z}/2\mathbb{Z}$ -graded extensions of the Poincaré group $\mathrm{SO}(4) \ltimes \mathbb{R}^4$.

Idea: One of the fields q_{\pm} in this theory lives in $\Omega^0(\mathbb{R}^4; S_{\pm})$ where S_{\pm} are the semispin representations of $\mathfrak{so}(4)$. This fields lives in $\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ -bidegree (-1,1): "bosonic ghost". Study symmetry breaking where this field q_{\pm} is given a non-zero value.

One can show that this theory at non-zero q_{\pm} is holomorphic. In particular this means it is easier to quantize.

Conjecture (E-Williams)

This "twisted supergravity theory" is equivalent to a theory modelling holomorphic symplectic vector fields, whose quantization we constructed in arxiv. org/abs/2008.02302.

