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In this talk I'm going to explain, briefly, what supersymmetry algebras are, and then describe their classification.
Finally we’ll give a complete description of all possible supersymmetry algebras in low dimensions.

1 Classification of Supersymmetry

The idea of supersymmetry isn’t too tricky. Suppose you have a quantum field theory on R"™ depending on a
Riemannian metric. We often want to restrict attention to theories where symmetries of R™ can be lifted to
symmetries of the theory. We know exactly what symmetries of R™ are: the group of isometries.

Definition 1.1. The Poincaré group in dimension n is the semi-direct product ISO(n) = SO(n) x R™. The Poincaré
algebra is its Lie algebra iso(n) = so(n) x R™.

Can we ever have more symmetry than this? A famous theorem of Coleman and Mandula, generalized to higher
dimensions by Pelc and Horwitz (more precisely, in dimension n > 4 and Lorentzian signature) says that, in a nice
enough quantum field theory with a Poincaré algebra action, the only way a larger algebra iso(n —1,1) C g can act
is if it splits as a sum: g = iso(n — 1,1) @ g’ (to put this in some context, this is a result about the classification of
Hilbert-space representations of Poincaré algebras).

Remark 1.2. In order to avoid issues related to the choice of signature, from now on we’ll only consider the
complezified Lie algebra iso(n; C), which is signature independent. There are many interesting things to say about
classification of supersymmetry algebras in the presence of a real structure, but we won’t get into them today.

We can get around this sort of no-go theorem by considering Z/2Z-graded Lie algebras (super Lie algebras) which
extend iso(n; C) in a non-trivial way.

Definition 1.3. An n-dimensional super Poincaré algebra is a super Lie algebra
A =iso(n; C) @ 11X

whose even part is the complexified Poincaré algebra, and whose odd part is a spinorial representation of so(n;C),
i.e. a representation none of whose irreducible summands lift to representations of the group SO(n; C) El

Luckily, this definition is quite restrictive: we can list all the possible super Poincaré algebras in every dimension.
First, let’s classify irreducible spinorial representations of so(n;C). We'll describe the classification without proof.
Lemma 1.4. If n is odd, there is a unique spin representation S (the Dirac spinor representation) of dimension
275, If n is even, there are two non-isomorphic spin representations Sy and S_ (Weyl spinor representations —
the Dirac spinor is Sy @ S_) both of dimension 2% .

IThis definition isn’t quite accurate when n < 3, there we really need to classify the irreducible spinorial representations explicitly:
all representations when n = 1 and all representations with odd charge for n = 2.
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Remark 1.5. These representations can be described explicitly using Clifford algebras C*(n) into which the spin
groups embed. One can abstractly identify the even part C*(n) C C(n) of the n-dimensional complex Clifford
algebra with either a matrix algebra (in odd dimensions) or a sum of two matrix algebras (in even dimensions).
The spin representations come from the defining representations of these matrix algebras. With a bit of work one
can characterize these isomorphisms pretty explicitly.

As a result, we can describe the odd part of the supersymmetry algebra as follows.

e When n is odd, a general spinorial representation takes the form W ® S for an N-dimensional complex vector
space W.

e When n is even, a general spinorial representation takes the form W, ® S; @& W_ ® S_ for a pair of complex
vector spaces (W, W_) of dimensions (N4, N_).

The remaining step is to classify the possible brackets between two odd vectors. That is, in the odd and even cases
respectively, we need to classify so(n; C)-equivariant symmetric maps

r:(Sew)eSew)—-Cr
andI': (S WL S_@W_ ) (St WiaeS_W_)—C".
Remark 1.6. The structure constants of the pairing I can be identified with the physicists’ y-matrices, i.e.
N(Q,Q") =7,Q Q"
The ~-matrices satisfy Clifford relations of the form 47 + v74* = 0 for i # j. In fact they are equivalent to the

structure constants for the Clifford multiplication using some duality moves (and canonical bilinear pairings) to
identify maps of the form S ® S — C™ with C* ® S — S.

We can perform this classification using the following facts (a version of Bott periodicity), noting that an equivariant
morphism to V' is the same as the identification of a summand isomorphic to V. As a result, to classify pairings
it’s enough to decompose the tensor square of S or Sy @ S_ into irreducible summands. Again, I won’t prove it,
but we’ll work through some examples.

Lemma 1.7. When n is odd there is a unique irreducible summand of S®? isomorphic to C". It is contained in
Sym?(S) if n = 1,3 mod 8 and in A%(S) otherwise.

When n is divisible by 4 there is a unique irreducible summand of Sy ® S_ isomorphic to C", and no such summand
in Sf?

When n =2 mod 4 there is a unique irreducible summand of S; ® S and of S_ ® S_ isomorphic to C”, and no
such summand in S, ® S_. It is contained in Sym? Sy if n > 2 mod 8 and in A2S, if n =6 mod 8.

Remark 1.8. We can say something more precise (and this is how you prove the above Lemma). If n is odd then
we can identify (using that S is self-dual)

Ses=ct(V)= @ AHV)

n—
2

AF(V).
0

1%

k=

Likewise, if n is even and S = S; @ S_ then we can decompose (using that Sy and S_ are mutually dual)
S@S=C(V) =P (V)
k=0

n/2—1
=2 | P AFV) | ona2W).
k=0

One then has to work a little more to understand the splitting into tensor products of Sy and S_.
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The upshot of this story is that the choice of a super Poincaré algebra is a choice of

e A single orthogonal vector space W if n =1,3 mod 8.

e A pair of orthogonal vector spaces W, W_ if n =2 mod 8.

e A single vector space W, = W, with dual W_ = W* if n =0,8 mod 8.
e A single symplectic vector space W if n =5,7 mod 8.

e A pair of symplectic vector spaces W, W_ if n =6 mod 8.

Remark 1.9 (On Terminology). So now we’ve abstractly classified the possible super Poincaré algebras, we should
give them names. It’s traditional to indicate a particular supersymmetry algebra using the dimension N or dimen-
sions (N, N_) of the auxiliary space(s) W or (W, W_). So you refer to things like “the 3-dimensional N = 2
supersymmetry algebra”.

There are exceptions however. When W = 5,6,7 mod 8, so the auxiliary spaces are symplectic, we instead use N
to indicate half the dimension of the auxiliary space, so that N = 1 is the minimal supersymmetry algebra. This
is a little confusing, but it’s the standard convention.

Finally, one sometimes indicates supersymmetry algebras using the “number of supersymmetries”, meaning the
dimension of the odd part of the supersymmetry algebra. We often restrict attention to either algebras with at
most 16 supercharges, or at most 32 supercharges. The reason for this is representation-theoretic: in dimensions
at least 4 these are the only super Poincaré algebras admitting non-trivial (massive) representations with spins at
most 1 (16 supercharges) or at most 2 (32 supercharges). The former restriction arises in supersymmetric gauge
theory, and means the dimension n < 10, and the latter in supergravity, and means the dimension n < 11.

Definition 1.10. The R-symmetry group Gr of a supersymmetry algebra 2 is the group of outer automorphisms
of 2 that act trivially on the even part. They are just given by automorphisms of the auxiliary vector spaces
W, W, , W_ that preserve the given structure (so usually they are products of orthogonal or symplectic groups,
except when n = 0,4 mod 8 when we get the R-symmetry group GL(W)).

1.1 Square Zero Supercharges

I just want to take a moment to mention square zero supercharges and their classification.

Definition 1.11. We say a supercharge @ in the odd part of a super Poincaré algebra is square zero if I'(Q, Q) = 0.

These symmetries are important because they define cohomological structures (i.e. cochain complex structures) on
spaces like the algebra of observables, or the Hilbert space, of a classical and quantum field theory. If the map
I'(Q, —) is surjective onto C™ is surjective then we say @ is topological. The cohomological structures associated
to topological square-zero supercharges allow us to define the notion of a topological twist of a supersymmetric
quantum field theory — typically such theories will be topological.

Remark 1.12. If a subgroup G C Spin(n) x Gr leaves a square-zero supercharge invariant, then the action of
the group G will survive to the twist. For instance, if we want Spin(n) to continue to act after twisting, we might
try embedding Spin(n) diagonally in the product Spin(n) x G using a homomorphism ¢: Spin(n) — Gg. Such
homomorphisms show up all the time when one studies twists of supersymmetric field theories. Such a ¢ can be
found for topological twists in dimensions less than 6.

2 Examples

1. Dimension 1: Since so(1; C) is trivial, the supersymmetry algebra is just C@®IIW where W is an orthogonal
vector space of dimension N. So, the R-symmetry group will be O(N). Square-zero supercharges are equivalent
to null vectors in W, i.e. elements w such that (w,w) = 0.
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For example, if N' = 2, there are null vectors of the form (1,¢) and (1,—¢). The conserved currents of these
supersymmetries are the @ and Qf we saw in Matthew’s talk yesterday.

. Dimension 2: Now s0(2; C) = C*. The vector representation C2 has weights 1 and —1. The two Weyl spinor
representations Sy are 1-dimensional, with weights 1/2 and —1/2 respectively, with the obvious pairing to
the two irreducible summands of the representation C2. There is a supersymmetry algebra associated to a
pair of orthogonal vector spaces W4 of dimensions Nx. It has R-symmetry group O(N;) x O(N_).

Square-zero supercharges are equivalent to pairs of null vectors (wy,w_) € W4 @ W_. They are topological
if wy,w_ are both non-zero, and holomorphic otherwise.

. Dimension 3: In this example s0(3; C) 2 s[(2; C): the spinor representation S is the 2-dimensional defining
representation and the vector representation is isomorphic to Symz(S), with the obvious pairing. We have a
supersymmetry algebra associated to an orthogonal vector space W of dimension N, again with R-symmetry
group O(N).

A supercharge @ € S ® W defines a linear map S* — W. It squares to zero exactly when the image is totally

isotropic (i.e. the restriction of the metric to the image is zero. You can only get a topological supercharge
when N > 4.

. Dimension 4: In this example s0(4;C) = s[(2; C); & sl(2;C)_. The two Weyl spinor representations Si are
identified with the two defining representations of the factors, and the vector representation is isomorphic to
their tensor product S; ® S_. So here, the supersymmetry algebra looks like

s[(2,0); @sl(2C)_ o C* @IS @W @ S_ @ W),

where W has dimension N, and the R-symmetry group is GL(N).

Here square-zero supercharges are the same as pairs of subspaces Wg, ,Wg_ of W and W* respectively of
dimension < 2, which pair to zero. They are topological when at least one of the subspaces has dimension 2.

. Dimension > 5: (For reference) In dimension 5 the spinor splits as A%2S =2 C® @ C and square zero spinors
are a bit of a pain to classify concisely (under @: W* — S the Poisson bivector pulls back to the Poisson
bivector). In dimension 6 A%(S1) = CS exactly. Square zero is again a bit of a pain: the two spaces W,
define an extension isomorphic to S, with all maps preserving volume forms. Beyond this you can calculate,
but the square zero conditions get more complicated (though they aren’t bad for N = 1).
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