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Introduction

I’m going to tell a story about algebra whose motivation comes
from quantum physics. Particles are classified into two types:
bosons and fermions. These particles behave somewhat differently:
in quantum mechanics a state of a system is described by a
wavefunction ψ.

• If you interchange two bosons, the wavefunction stays the
same ψ 7→ ψ.

• If you interchange two fermions, the wavefunction picks up a
sign ψ 7→ −ψ.

This is a talk about “supermathematics”, where we study algebraic
objects that split up into bosonic and fermionic pieces.
Supermathematics is used to describe physical systems containing
both fermions and bosons, and supersymmetries are symmetries
that swap bosons and fermions.



Superalgebra

A super vector space is just a vector space that splits up into even
and odd pieces:

V = V0 ⊕ V1.

We talk about V having a Z/2Z-grading, and we say an element
v ∈ Vj has degree j (written |v | = j).

A commutative super algebra is a super vector space A with an
associative product, where

|a · b| = |a|+ |b|,

and
a · b = (−1)|a||b|b · a.



Example

Let’s talk about free superalgebras over C.

• C[ε] where ε is odd. Here ε2 = 0, so C[ε] = C⊕ εC is 1
1 + 1-dimensional super vector space.

• C[ε1, · · · , εn] where the εi are all odd. All the εi square to
zero, so this algebra has dimension 2n as a vector space. Can
identify with the cohomology of (S1)n.

• C[x1, · · · , xn, ε1, · · · , εn] where the xi are even and the εi are
odd. The x ’s commute with the ε’s: this is a module over the
ordinary polynomial ring of rank 2n. This gives a model for
polynomial differential forms on Cn.



Lie Algebras

Our next example of super algebra will generalize the following
idea from non-super mathematics.

Definition
A Lie algebra is a vector space L equipped with a bilinear product
[, ] that we call a Lie bracket that is:

• Antisymmetric: [a, b] = −[b, a].

• Jacobi: [a, [b, c]] + [b, [c, a]] + [c , [a, b]] = 0.

Lie algebras can be used to describe “infinitesimal symmetry” in
geometry. If you have a Lie group G acting on a manifold M, you
can “differentiate” the action to find a Lie algebra acting on the
tangent spaces of M.



Examples

Let’s give a few examples, to be generalized to the super case
shortly.

• Abelian Lie algebras: Cn with the zero bracket.

• Define gl(n;C) to be the vector space of n × n complex
matrices, with bracket given by commutator. This Lie algebra
describes all linear (infinitesimal) automorphisms of Cn.

• Define so(n;C) ⊆ gl(n;C) to be the subalgebra consisting of
those matrices A where AT = −A (exercise: check this is a
vector subspace closed under the bracket). This Lie algebra
describes infinitesimal rotations of an n-dimensional vector
space.



Super Lie Algebras

Definition
A super Lie algebra is a supervector space L equipped with a
product [, ] such that |[a, b]| = |a|+ |b|, that is

• Super antisymmetric: [a, b] = (−1)|a||b|+1[b, a].

• Super Jacobi:

(−1)|a||c|[a, [b, c]]+(−1)|a||b|[b, [c , a]]+(−1)|b||c|[c, [a, b]] = 0.



Examples

• Write Cn|m for the super vector space with even part Cn and
odd part Cm. We define gl(n|m;C) to be the super vector
space of all linear maps Cn|m → Cn|m. We give it the
“supercommutator” Lie bracket, defined on homogenous
elements by

[A,B] = AB + (−1)|A||B|+1BA.

• There’s a super analogue of so(n) denoted osp(n|m) (the
orthosymplectic super Lie algebra).



Super Translation

Finally, let’s talk about our main kind of example. We’ll consider
super translation algebras. That is, super Lie algebras T whose
even part is just an abelian Lie algebra Cn. So as a super vector
space,

T = Cn ⊕ ΠS

for some S (here Π means parity shift, i.e. placing in odd degree).
The only bracket is a bilinear symmetric map

Γ: S ⊗ S → Cn.

We’d like the Lie algebra so(n;C) to act on T , extending the
action on Cn by rotations. So that means we have to specify an
action on S , and we need Γ to be equivariant (to intertwine the
actions on the source and target).



Examples

• Dimension 3: so(3;C) ∼= sl(2;C). Let S = V ⊗WN where V
is the 2d defining representation and WN is N -dimensional,
with trivial action. There is a unique pairing Γ: V ⊗ V ∼= C3.

• Dimension 4: so(4;C) ∼= sl(2;C)⊕ sl(2;C). Let
S = V+ ⊗WN ⊕ V− ⊗W ∗

N where V± are the 2d defining
representation of the two factors and WN is N -dimensional,
with trivial action. There is a unique pairing
Γ: V+ ⊗ V− ∼= C4.



Application to Physics

One starting point for models of classical and quantum field theory
involves the following data:

• A super vector space Φ of fields (usually the space of sections
of a vector bundle on Rn).

• A functional S : Φ→ C called the action; physical states are
critical points of this action.

A symmetry of the system is a linear map Φ→ Φ that leaves S
invariant. Under some assumptions on the physical system, the
possible symmetries are quite restricted.

Theorem (Coleman–Mandula)

For a “nice enough” quantum field theory, the group of symmetries
is a direct product ISO(n)× G.



Theorem (Coleman–Mandula)

For a “nice enough” quantum field theory, the group of symmetries
is a direct product ISO(n)× G.

One way around this theorem is to generalize the notion of
symmetry from ordinary groups to supergroups. That is, to include
supersymmetries that interchange bosons and fermions. There are
“nice” field theories that carry an action of supertranslation
algebras. Such field theories are called supersymmetric.



Thank you for listening!


