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Topological Quantum Field Theories (TQFTs) are a special
simplified kind of quantum field theory amenable to rigorous study
by mathematicians.

Why would anyone care about mathematically rigorous QFT?

Disclaimer: I'm a mathematician, not a physicist! I'll try to keep
this presentation as grounded in the physics background as | can,
but I'm not an expert.

I'm not going to assume you know anything about topology or
QFT, and I'll include lots of pictures.



Why care about making QFT rigorous?

e Many deep mathematical insights have come from QFT



Why care about making QFT rigorous?

e Many deep mathematical insights have come from QFT
e Donaldson: understanding topology of 4d manifolds.



Why care about making QFT rigorous?

e Many deep mathematical insights have come from QFT
e Donaldson: understanding topology of 4d manifolds.
e Witten, Kontsevich, ...: “mirror symmetry”: relates two
different kinds of geometry.



Why care about making QFT rigorous?

e Many deep mathematical insights have come from QFT
e Donaldson: understanding topology of 4d manifolds.
e Witten, Kontsevich, ...: “mirror symmetry”: relates two
different kinds of geometry.
o Kapustin-Witten: 4d Gauge theories solve a famous open
problem in representation theory of groups.



Why care about making QFT rigorous?

e Many deep mathematical insights have come from QFT
e Donaldson: understanding topology of 4d manifolds.
e Witten, Kontsevich, ...: “mirror symmetry”: relates two
different kinds of geometry.
o Kapustin-Witten: 4d Gauge theories solve a famous open
problem in representation theory of groups.

However turning the arguments into mathematical proofs is hard
precisely because there is no mathematical definition of a QFT.
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I'll explain the idea in a geometrical way, so | can explain as much
as possible through pictures.
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Start with some geometry. We start with a manifold M (a curved
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spacetime.

M

We won't assume that M is Minkowski space or anything like that.
This picture is popular with string theorists, where M might be the
worldsheet of a string (but I'm not making any claims about the
physical relevance of string theory).



A Picture of QFT

M

Whatever space is at some instant of time, it should be a slice C
through spacetime one dimension lower (e.g. M might have a
Lorentzian metric, and C might be a Cauchy surface).
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A Picture of QFT

A QFT should assign a Hilbert space of states to the space slice
C.

Given two instants in time t; < tp, there should be a unitary time
evolution map between the state spaces. This will depend on the
geometry of spacetime in between the two slices.

ev: /H(Cl) — H(Cg)
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Now, we make our simplifying assumption: impose that the Hilbert
spaces and time evolution maps only depend on the topology of
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distances, angles, curvature etc.

It's easiest to illustrate this by pictures:
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But this is different!
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Now, let's make this a little more precise (though I'll gloss over
many details to keep things simple). I'll describe an n-dimensional
TFT, but I'll illustrate everything with 2d pictures.

e To every n — 1-dimensional manifold C we assign a Hilbert
space H(C).

e To a disjoint union C; LI G, we assign the tensor product
H(C1) @ H(C). In particular this means the empty manifold
is assigned just C.



Axioms for Topological QFT

e To every n-dimensional manifold M with boundary C; LI G
(we call these things cobordisms) we assign a unitary map

evy . H(Cl) — H(Cz)

—_— g - H(C]_}—— H{Cz}




Axioms for Topological QFT

e To every n-dimensional manifold M with boundary C; LI G
(we call these things cobordisms) we assign a unitary map

evy . H(Cl) — H(Cz)

—_— g - H(C]_}—— H{Cz}

e Cylinders C x [0,1] are assigned the identity map. (This says
the Hamiltonian is trivial!)



Axioms for Topological QFT

e To every n-dimensional manifold M with boundary C; LI G
(we call these things cobordisms) we assign a unitary map

evy . H(Cl) — H(Cz)

—_— g - H(C]_}—— H{Cz}

e Cylinders C x [0,1] are assigned the identity map. (This says
the Hamiltonian is trivial!)

e We can glue cobordisms together, and the resulting evolution
map is just the composite.
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To finish, I'll describe an application due to Witten ('89). He used
an example of a TQFT to compute invariants for knots. These are
numerical ways of distinguishing between different kinds of knots
(a hard problem in general).
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Now, delete a tubular thickening t(K) of K from S3. The result is
a 3d manifold S3 — t(K) which is different for different knots.
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Now, here's the idea. Witten considered a well-understood
example of a 3d TQFT called Chern-Simons theory, and applied
it to this 3d manifold. Think of S3 — t(K) as a cobordism from
the torus (the boundary of t(K)) to the empty manifold. Our
TQFT gives us a time evolution map

EVS3_t(K)* H(Tz) — (C,
l.e. a number for every state, which is different for different knots.

One can use this to cook up knot invariants by choosing states in
H(T?). What's more, one can compute these using path integral
methods! So calculations in QFT compute interesting invariants in
knot theory.



Thanks for Listening!



