Math 121 - Calculus II - Tests for Convergence and Divergence

- 1. *n*th Term Divergence Test: Given a series $\sum_{n=1}^{\infty} a_n$, if $\lim_{n\to\infty} a_n \neq 0$ then the series always *diverges*.
- 2. Geometric Series: A geometric series is a series of the form

$$\sum_{n=0}^{\infty} ar^n.$$

Here a is the first term of the series and r is the common ratio. You can check that a series $\sum_{n=0}^{\infty} a_n$ is geometric by checking whether a_{n+1}/a_n is constant. A geometric series diverges if $|r| \ge 1$ and converges if |r| < 1. A convergent geometric series converges to

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

- 3. Integral Test: Suppose you have a function f so that $f(n) = a_n$ for all $n \ge 1$. Suppose that
 - f is continuous for $x \ge 1$,
 - *f* is decreasing for $x \ge 1$ (for instance *f* is differentiable and $f'(x) \le 0$), and
 - f is positive for $x \ge 1$ (i.e. $f(x) \ge 0$).

Then the series $\sum_{n=1}^{\infty} a_n$ converges/diverges if the improper integral $\int_1^{\infty} f(x) dx$ converges/diverges.

4. *p*-Series: Using the integral test we showed that the series

$$\sum_{n=1}^{\infty} n^p$$

converges if p < -1 and diverges if $p \ge -1$.

5. Comparison Test: Given two series

$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} A_n$,

suppose that $a_n \ge 0$, $A_n \ge 0$ and $a_n \le A_n$ for all n. Then:

- If the small series $\sum_{n=1}^{\infty} a_n$ diverges, so does the large series $\sum_{n=1}^{\infty} A_n$.
- If the large series $\sum_{n=1}^{\infty} A_n$ converges, so does the small series $\sum_{n=1}^{\infty} a_n$.
- 6. Limit Comparison Test: Given two series

$$\sum_{n=1}^{\infty} a_n \text{ and } \sum_{n=1}^{\infty} b_n,$$

suppose that $a_n \ge 0$, $b_n \ge 0$ and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = k, \text{ not equal to } 0 \text{ or } \infty.$$

Then $\sum_{n=1}^{\infty} a_n$ converges/diverges if $\sum_{n=1}^{\infty} b_n$ converges/diverges.

7. Alternating Series Test: An alternating series is a series of the form

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n |a_n| \text{ or } \sum_{n=1}^{\infty} (-1)^{n+1} |a_n|.$$

Given an alternating series, if

- $\lim_{n\to\infty} |a_n| = 0$ and
- $|a_n|$ is decreasing,

then the alternating series $\sum_{n=1}^{\infty} a_n$ converges.

8. Ratio Test: Given a series $\sum_{n=1}^{\infty} a_n$ with $a_n \neq 0$ for all n, we compute the limit

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

- If L < 1 then the series $\sum_{n=1}^{\infty} a_n$ converges.
- If L > 1 then the series $\sum_{n=1}^{\infty} a_n$ diverges.
- If L = 1 the ratio test is inconclusive.
- 9. Absolute Convergence: We say a series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if the series of absolute values $\sum_{n=1}^{\infty} |a_n|$. Any absolutely convergent series is convergent. A convergent series that is not absolutely convergent is called *conditionally convergent*.