Homology and Cohomology – Week 2 Exercises

If you didn't already, read about my favorite example of a cochain complex, the de Rham complex $\Omega^{\bullet}(\mathbb{R}^n)$ in Bott and Tu's *Differential Forms in Algebraic Topology* chapter 1 https://www.math.auckland.ac.nz/~hekmati/Books/BottTu.pdf.

Think about these exercises, and write up solutions to three of them.

- 1. (a) Prove that chain homotopy equivalence is an equivalence relation.
 - (b) Prove that the set of chain homotopy equivalence classes of chain maps $C_{\bullet} \to D_{\bullet}$ forms an abelian group.
- 2. Let *C* be the chain complex with $C_1 = \mathbb{Z}$, $C_0 = \mathbb{Z}$ with differential given by multiplication by *n*. Let $D = \mathbb{Z}/n$ viewed as a chain complex concentrated in degree zero. Prove that *C* and *D* are quasi-isomorphic (meaning there is a chain map between them inducing an isomorphism on cohomology) but not chain homotopy equivalent.
- 3. Let $X = \mathbb{R}^2 \setminus (0, 0)$, the punctured plane.
 - (a) Prove that $\mathrm{H}^{0}_{\mathrm{dR}}(X) \cong \mathbb{R}$
 - (b) Prove that $H^1_{dR}(X) \cong \mathbb{R}$ by giving a non-trivial linear map $Z^1_{dR}(X) \to \mathbb{R}$ by integration around a curve around the origin, and checking that the kernel is $B^1_{dR}(X)$ (think back to multivariate calculus).
 - (c) What changes if you puncture \mathbb{R}^2 in k locations instead of just one?
- 4. The following is an exercise about the *cone* of a chain map. Let C, D be chain complexes, and let $f: C \to D$ be a chain map. As we discussed today, we can form a new complex from this called Cone(f) in the following way. Let $Cone(f)_n = C_{n-1} \oplus D_n$, and define a differential by

$$d(a,b) = (-d_C(a), d_D(b) - f(a)).$$

- (a) Check that this formula really is a differential.
- (b) Prove that f is a quasi-isomorphism if and only if Cone(f) is exact.
- (c) Prove that f is a homotopy equivalence if and only if Cone(f) is contractible.
- 5. Solve Weibel's exercise 1.5.1 and 1.5.2.
- 6. Let $G = C_n$ be a finite cyclic group with generator σ , and let $\mathbb{Z}G$ be the group ring of G (that is, the ring freely generated by the elements σ^k of G with multiplication given by the group operation: $n_1\sigma^{k_1} \times n_2\sigma^{k_2} = n_1n_2\sigma^{k_1+k_2}$. Let $\nu \in \mathbb{Z}G$ be the sum of the generators:

$$\nu = 1 + \sigma + \dots + \sigma^{N-1}$$

(a) Check that the differential on the chain complex

$$B_{\bullet}(G) = \cdots \xrightarrow{\nu} \mathbb{Z}G \xrightarrow{\sigma-1} \mathbb{Z}G \xrightarrow{\nu} \mathbb{Z}G \xrightarrow{\sigma-1} \mathbb{Z}G \longrightarrow \mathbb{Z}G$$

squares to zero, and compute the homology of the complex.

(b) Define

$$C^{\bullet}(G) = \operatorname{Hom}_{\mathbb{Z}G}(B_{\bullet}(G), \mathbb{Z})$$

meaning we take homomorphisms of $\mathbb{Z}G$ -modules, and where \mathbb{Z} is the module where σ acts by the identity. Compute the cohomology $H^{\bullet}(G)$ of $C^{\bullet}(G)$.