Homology and Cohomology – Week 5 Exercises

Read the subsections of Hatcher's *Algebraic Topology* §2.1 entitled "Simplicial homology" and "Singular homology" (note, Hatcher likes to use a generalization of a simplicial complex called a Δ -complex. Take a look at the subsection with that title to see what the difference is. Then read tom Dieck's *Algebraic Topology* section 9.1.

Think about these exercises, and write up solutions to three of them. If you like you can also submit exercise solutions from last week.

- 1. (a) Solve Hatcher's exercise 2 on page 131.
 - (b) Compute the simplicial homology of the Δ -complex you found that deformation retracts onto the Klein bottle.
 - (c) Compute the simplicial homology of the Δ -complex you found that deformation retracts onto \mathbb{RP}^2 .
- 2. Solve Hatcher's exercise 8 on page 131.
- 3. Let SimCom denote the category whose objects are simplicial complexes and whose morphisms are simplicial maps. That is, if $(V_1, S_1), (V_2, S_2)$ are simplicial complexes functions $f \colon V_1 \to V_2$ between the sets of vertices so that if σ is a simplex in S_1 then the image $f(\sigma)$ is a simplex in S_2 . Let Chain denote the category of chain complexes over \mathbb{Z} . Show that simplicial homology defines a functor $\operatorname{SimCom} \to \operatorname{Chain}$) (you will need to say what the functor should do to a morphism).
- 4. Likewise, show that singular homology defines a functor from the category Top of topological spaces and continuous maps to Chain.
- 5. Compute the homology groups $H_{\bullet}(X, A)$ where $X = S^1$ or $S^1 \times S^1$ and A is a finite subset (for instance, you could use the exact sequence tom Dieck gives as Theorem 9.1.3).