Math 131-H - Calculus 1 Honors
Name: \qquad
Fall 2019
Final Exam (Practice 2)
12/16/19
Time Limit: 120 Minutes
Section Time (9:05 or 10:10): \qquad

This exam contains 9 pages (including this cover page) and 7 problems.
You may not use your books, notes, or a calculator on this exam.
You are required to show your work on each problem on this exam: an incorrect answer supported by substantially correct calculations or explanations may still receive partial credit.

Problem	Points	Score
1	15	
2	11	
3	10	
4	14	
5	14	
6	14	
7	12	
Total:	90	

1. (15 points) Calculate $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$ where $f(x)$ is each of the following functions.
(a) (5 points) $f(x)=\frac{\cos (2 x)}{x^{2}}$.
(b) (5 points) $f(x)=\cos \left(2 x^{2}\right)$.
(c) (5 points) $f(x)=\cos \left(\log \left(x^{2}\right)\right.$), where $\log (x)$ is the natural logarithm.
2. (11 points) (a) (5 points) State the limit definition of the derivative.
(b) (6 points) Let $f(x)=x^{-2}$. Use the limit definition of the derivative and the limit laws to show that $\frac{\mathrm{d}}{\mathrm{d} x} f(x)=-2 x^{-3}$.
3. (10 points) Consider the ellipse described by the equation $9 x^{2}+16 y^{2}=25$.
(a) (5 points) Use implicit differentiation to find an equation for the slope of the tangent line to the ellipse.
(b) (2 points) Show that the point $(x, y)=(1,1)$ lies on the curve.
(c) (3 points) Find an equation for the tangent line to the curve at the point $(1,1)$.
4. (14 points) Consider the function $f(x)=1+1 / x-1 / x^{2}$.
(a) (3 points) Find the roots of $f(x)$, i.e. the x-values where $f(x)=0$.
(b) (5 points) Find the critical points of $f(x)$, and determine whether they are maxima, minima or inflection points.
(c) (6 points) Sketch the graph of $f(x)$.
5. (14 points) (a) (4 points) State the definition of $\sinh (x)$ and $\cosh (x)$ in terms of exponential functions.
(b) (5 points) Use the exponential definition to show that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$ for all x.
(c) (5 points) Use the exponential definition to show that $\frac{\mathrm{d}}{\mathrm{d} x} \sinh (x)=\cosh (x)$.
6. (14 points) (a) (4 points) State L'Hôpital's theorem.
(b) (3 points) Is the limit $\lim _{x \rightarrow 0^{+}} \cos (x)^{1 / x^{2}}$ an indeterminate form? If so, of which type?
(c) (7 points) Evaluate the limit $\lim _{x \rightarrow 0^{+}} \cos (x)^{1 / x^{2}}$.
7. (12 points) (a) (4 points) Find the derivative of the function $F(x)=x \log (|x|)-x$, where $\log (x)$ is the natural logarithm.
(b) (3 points) Let $f(x)=\log (|x|)$. Where is $f(x)$ continuous?
(c) (5 points) Find all the possible antiderivatives of the function $f(x)=\log (|x|)$.
