Math 131-H - Homework 1 - Limits

Due: in class on Tuesday September 17th.

1. Let $\log (x)$ be the natural logarithm function, with base e. In this first example, we'll use the fact that, if $x>0$, then $\log (x)<x-1$. We'll prove this later in the course using the derivative of $\log (x)$.
(a) Use $\log (x)<x-1$ to show that $1-\frac{1}{x}<\log (x)$ if $x>0$ (Hint: use the substitution $x=\frac{1}{u}$).
(b) Use the squeeze theorem to find the limit

$$
\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}
$$

2. In this problem we'll study a very poorly-behaved example of a function. Recall that a rational number is a real number that can be written as a fraction p / q, where p and q are integers. An irrational number is a real number which is not rational, e.g. $\sqrt{2}$. Define a function by

$$
i(x)= \begin{cases}1 & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

This function is called the indicator function of the rational numbers, or sometimes the Dirichlet function. Even though $i(x)$ is defined for all real numbers, we'll show that the limit $\lim _{x \rightarrow x_{0}} i(x)$ does not exist for any value x_{0}.
(a) First, show that for any real numbers $a<b$, the open interval (a, b) contains a rational number. Hint: use the fact that there exists a positive integer n such that $b-a>1 / n$, then show that there is an integer in the interval $(n a, n b)$.
(b) If a number x is rational, then $x+\sqrt{2}$ is always irrational. Use this fact to show that for any real numbers $a<b$, the open interval (a, b) contains an irrational number as well.
(c) Use the formal definition of a limit to show that, for any number x_{0}, the limit $\lim _{x \rightarrow x_{0}} i(x)$ does not exist.

