# Math 131-H - Homework 3 - The Chain Rule 

## Due: in class on Thursday October 17th.

1. The $n^{\text {th }}$ Hermite polynomial is $H_{n}(x)$ is the polynomial defined by

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} e^{-x^{2} / 2}=H_{n}(x) e^{-x^{2} / 2}
$$

(a) Compute $H_{1}(x), H_{2}(x), H_{3}(x)$ and $H_{4}(x)$.
(b) Find a formula for $H_{n}(x)$ in terms of $H_{n-1}(x)$ and the derivative $H_{n-1}^{\prime}(x)$.
2. The Oval of Cassini of eccentricity $b$ is defined to be the curve consisting of all points

$$
\left\{(x, y) \text { in the plane }: \operatorname{dist}((x, y),(1,0)) \times \operatorname{dist}((x, y),(-1,0))=b^{2}\right\}
$$

for each constant $b>0$, where we have written $\operatorname{dist}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$ to mean the distance from point $\left(x_{1}, y_{1}\right)$ to point $\left(x_{2}, y_{2}\right)$.
(a) Show that the Oval of Cassini of eccentricity $b$ is defined by the equation

$$
\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)+1=b^{4} .
$$

(b) Find an equation for the slope of the tangent line at a point on the curve in terms of $x$ and $y$.
(c) At which points $\left(x_{0}, y_{0}\right)$ is the tangent line vertical? At which points is it horizontal? (Note: we did an example of this in class, specifically we worked this out for the lemniscate, which corresponds to $b=1$.)
(d) Sketch the Oval of Cassini when $b^{2}=0.5$, when $b^{2}=1.5$ and when $b^{2}=3$. Mark the points you found in part (c) on your graphs.

