Math 131-H – Homework 3 – The Chain Rule

Due: in class on Thursday October 17th.

1. The n^{th} Hermite polynomial is $H_n(x)$ is the polynomial defined by

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} e^{-x^2/2} = H_n(x) e^{-x^2/2}$$

- (a) Compute $H_1(x), H_2(x), H_3(x)$ and $H_4(x)$.
- (b) Find a formula for $H_n(x)$ in terms of $H_{n-1}(x)$ and the derivative $H'_{n-1}(x)$.
- 2. The Oval of Cassini of eccentricity b is defined to be the curve consisting of all points

 $\{(x, y) \text{ in the plane} : \operatorname{dist}((x, y), (1, 0)) \times \operatorname{dist}((x, y), (-1, 0)) = b^2\}$

for each constant b > 0, where we have written $dist((x_1, y_1), (x_2, y_2))$ to mean the distance from point (x_1, y_1) to point (x_2, y_2) .

(a) Show that the Oval of Cassini of eccentricity b is defined by the equation

$$(x^{2} + y^{2})^{2} - 2(x^{2} - y^{2}) + 1 = b^{4}.$$

- (b) Find an equation for the slope of the tangent line at a point on the curve in terms of x and y.
- (c) At which points (x_0, y_0) is the tangent line vertical? At which points is it horizontal? (Note: we did an example of this in class, specifically we worked this out for the lemniscate, which corresponds to b = 1.)
- (d) Sketch the Oval of Cassini when $b^2 = 0.5$, when $b^2 = 1.5$ and when $b^2 = 3$. Mark the points you found in part (c) on your graphs.