Math 131-H - Homework 4 - Applications of Differentiation

Due: in class on Tuesday October 29th.

1. (a) Use implicit differentiation to compute the derivative of the function $f(x)=\operatorname{arctanh}(x)$.
(b) Use implicit differentiation to compute the derivative of the function $g(x)=\operatorname{arccoth}(x)$.
(c) What do you notice about your answers to parts (a) and (b)? Explain how this is possible, by discussing for which x values the functions f and g are defined.
2. In the theory of special relativity, we have the following phenomenon. Suppose an observer O at position x can see two clocks, one at rest, and one moving past them at a constant velocity v. At time t according to the stationary clock, one would expect to see the moving clock at position $x+v t$, and showing time t. Instead, the observer will see the moving clock at position

$$
x_{\mathrm{new}}=\gamma(v)(x+v t)=\frac{x+v t}{\sqrt{1-v^{2} / c^{2}}}
$$

and showing time

$$
t_{\mathrm{new}}=\gamma(v)\left(t+\frac{v x}{c^{2}}\right)=\frac{t+\frac{v x}{c^{2}}}{\sqrt{1-v^{2} / c^{2}}}
$$

where c is the speed of light. These formulae are called the Lorentz transformations, and the factor $\gamma(v)$ is called the Lorentz factor.
(a) Let $\zeta=\operatorname{arctanh}(v / c)$ (sometimes called the "rapidity"). Show that the Lorentz transformations can be rewritten in the hyperbolic form

$$
\begin{aligned}
x_{\text {new }} & =x \cosh (\zeta)+c t \sinh (\zeta) \\
t_{\text {new }} & =t \cosh (\zeta)+\frac{x}{c} \sinh (\zeta)
\end{aligned}
$$

(b) Suppose now that the observer O starts moving too, at a constant velocity u (so, in other words, $\frac{\mathrm{d} x}{\mathrm{~d} t}=u$). Use the chain rule to calculate the new apparent velocity $u_{\text {new }}=\frac{\mathrm{d} x_{\text {new }}}{\mathrm{d} t_{\text {new }}}$ in terms of u, v and the speed of light c. (Note: don't use the hyperbolic form from (a) in this part, it'll make the calculation more difficult).
(c) Suppose $v=c$. Show that $\frac{\mathrm{d} u_{\text {new }}}{\mathrm{d} u}=0$. In other words, if two objects are moving apart at the speed of light, it's not possible to alter their relative velocity by speeding up or slowing down.

