Math 131-H - Homework 5 - Curve Sketching

Due: in class on Thursday November 14th.

1. Consider the function $f(x)=2 x^{3}-b x^{2}+c x$, where b and c are constants.
(a) Suppose the graph $y=f(x)$ has one minimum at the point $(x, y)=(p, f(p))$, and one maximum at $(x, y)=(q, f(q))$. Find p and q in terms of b and c. What condition must b and c satisfy for the curve to have one minimum and one maximum?
(b) For which x is the graph $y=f(x)$ concave upwards? For which x is it concave downwards?
(c) Sketch the graph $y=f(x)$, marking the points $(p, f(p)),(q, f(q))$, and any points where the curve changes concavity.
2. Consider the curve given by graphing the function $f(x)=\frac{x}{\sqrt{x^{2}-2 x+a}}$, where a is a constant.
(a) If $a>1$, where is $f(x)$ defined? What if $a \leq 1$?
(b) Show that, if $a>1$, then the graph $y=f(x)$ has exactly one critical point.
(c) Compute $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
(d) Sketch a graph of $y=f(x)$ when $a=2$.
(e) Sketch a graph of $y=f(x)$ when $a=1$ (Hint: don't forget that $\sqrt{u^{2}}=|u|$, not just u).
