Math 131-H – Homework 5 – Curve Sketching

Due: in class on Thursday November 14th.

- 1. Consider the function $f(x) = 2x^3 bx^2 + cx$, where *b* and *c* are constants.
 - (a) Suppose the graph y = f(x) has one minimum at the point (x, y) = (p, f(p)), and one maximum at (x, y) = (q, f(q)). Find p and q in terms of b and c. What condition must b and c satisfy for the curve to have one minimum and one maximum?
 - (b) For which x is the graph y = f(x) concave upwards? For which x is it concave downwards?
 - (c) Sketch the graph y = f(x), marking the points (p, f(p)), (q, f(q)), and any points where the curve changes concavity.
- 2. Consider the curve given by graphing the function $f(x) = \frac{x}{\sqrt{x^2 2x + a}}$, where a is a constant.
 - (a) If a > 1, where is f(x) defined? What if $a \le 1$?
 - (b) Show that, if a > 1, then the graph y = f(x) has exactly one critical point.
 - (c) Compute $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.
 - (d) Sketch a graph of y = f(x) when a = 2.
 - (e) Sketch a graph of y = f(x) when a = 1 (Hint: don't forget that $\sqrt{u^2} = |u|$, not just u).