Math 131-H – Homework 6 – Integration

Due: in class on Tuesday December 3rd.

- 1. Fix a < b and any integrable function f(x). For which value of c is the expression $\int_a^b (f(x) c)^2$ smallest? (Hint: you don't need to use the fundamental theorem of calculus: just use what you know about finding maxima and minima)
- 2. Let $f(x) = e^x$, on the interval [0, 1]
 - (a) Apply the mean value theorem to the function f(x) over the interval [0, x] to show that the curve $y = e^x$ lies between the lines y = 1 + x and y = 1 + 3x whenever x is between 0 and 1.
 - (b) Use this result to show that $1 < \int_0^1 e^x dx < 2$ without evaluating the integral.
- 3. Let $f(x) = x^3 + x^2$ on the interval [0, 2].
 - (a) Show that $\sum_{k=0}^{n-1} k^2 = \frac{n(n-1)(2n-1)}{6}$ (Hint: expand out $(k+1)^3 k^3$, then take the sum from k = 0 to n-1).
 - (b) Show that $\sum_{k=0}^{n-1} k^3 = \frac{n^2(n-1)^2}{4}$ (Hint: expand out $(k+1)^4 k^4$, then take the sum. You'll need to use the sum from (a)).
 - (c) Calculate $\int_0^2 f(x) dx$ by computing and simplifying the Riemann sums A_n for each n, then taking the limit as $n \to \infty$.