Math 131-H - Homework 6 - Integration

Due: in class on Tuesday December 3rd.

1. Fix $a<b$ and any integrable function $f(x)$. For which value of c is the expression $\int_{a}^{b}(f(x)-c)^{2}$ smallest? (Hint: you don't need to use the fundamental theorem of calculus: just use what you know about finding maxima and minima)
2. Let $f(x)=e^{x}$, on the interval $[0,1]$
(a) Apply the mean value theorem to the function $f(x)$ over the interval $[0, x]$ to show that the curve $y=e^{x}$ lies between the lines $y=1+x$ and $y=1+3 x$ whenever x is between 0 and 1 .
(b) Use this result to show that $1<\int_{0}^{1} e^{x} \mathrm{~d} x<2$ without evaluating the integral.
3. Let $f(x)=x^{3}+x^{2}$ on the interval $[0,2]$.
(a) Show that $\sum_{k=0}^{n-1} k^{2}=\frac{n(n-1)(2 n-1)}{6}$ (Hint: expand out $(k+1)^{3}-k^{3}$, then take the sum from $k=0$ to $n-1$).
(b) Show that $\sum_{k=0}^{n-1} k^{3}=\frac{n^{2}(n-1)^{2}}{4}$ (Hint: expand out $(k+1)^{4}-k^{4}$, then take the sum. You'll need to use the sum from (a)).
(c) Calculate $\int_{0}^{2} f(x) \mathrm{d} x$ by computing and simplifying the Riemann sums A_{n} for each n, then taking the limit as $n \rightarrow \infty$.
