Math 131-H – Calculus 1 Honors	Name:	
Fall 2019		
Midterm 1 (Practice)		
4/10/19		
Time Limit: 60 Minutes	Section Time (9:05 or 10:10):	

This exam contains 5 pages (including this cover page) and 4 problems.

You may not use your books, notes, or a calculator on this exam.

You are required to show your work on each problem on this exam: an incorrect answer supported by substantially correct calculations or explanations may still receive partial credit.

Problem	Points	Score
1	12	
2	12	
3	10	
4	16	
Total:	50	

1. (12 points) Consider the function

$$f(x) = \begin{cases} 2x^2 & x < 0\\ x^{5/2} & x \ge 0. \end{cases}$$

(a) (6 points) Is f(x) differentiable at x = 0? Explain why or why not.

(b) (6 points) Is f(x) twice differentiable at x = 0? Explain why or why not.

- 2. (12 points) Consider the function $f(x) = \frac{x^2 + x}{2x^3 6x^2 + 4x}$.
 - (a) (6 points) Find the locations of all the vertical asymptotes of the graph of f(x). Justify your answer by computing a limit.

(b) (6 points) Does f(x) have a horizontal asymptote? If so, where? Justify your answer by computing a limit as $x \to \infty$.

- 3. (10 points) Consider the function $f(x) = 2x^2 + 1$.
 - (a) (5 points) Use the limit definition of the derivative to find f'(x).

(b) (5 points) Find an equation for the line tangent to the graph of y = f(x) at the point where x = 3.

4. (16 points) Find the derivative f'(x) of the following functions.
(a) (4 points) f(x) = x⁷ + 6x³.

(b) (6 points) $f(x) = e^{x/2} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right).$

(c) (6 points)
$$f(x) = \frac{x^3 + 2x + 1}{4x^2 + 1}$$
.