Math 131-H - Calculus 1 Honors
Name:
Fall 2019
Midterm 2 (Practice)
11/3/19
Time Limit: 60 Minutes Section Time (9:05 or 10:10):

This exam contains 5 pages (including this cover page) and 4 problems.
You may not use your books, notes, or a calculator on this exam.
You are required to show your work on each problem on this exam: an incorrect answer supported by substantially correct calculations or explanations may still receive partial credit.

Problem	Points	Score
1	10	
2	14	
3	11	
4	15	
Total:	50	

1. (10 points) Use the chain rule to differentiate the following functions.
(a) (5 points) $f(x)=\frac{1}{\sqrt{x^{3}+2 x}}$.
(b) (5 points) $g(x)=\log (\sec (x))$.
2. (14 points) Recall that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$ for all x, and therefore that $1-\tanh ^{2}(x)=$ $\operatorname{sech}^{2}(x)$.
(a) (3 points) Use this fact to show that $\tanh ^{2}(\operatorname{arcsech}(x))=1-x^{2}$.
(b) (4 points) Use the quotient rule to find $\frac{\mathrm{d}}{\mathrm{d} x} \operatorname{sech}(x)$.
(c) (7 points) Use implicit differentiation to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \operatorname{arcsech}(x)=-\frac{1}{x \sqrt{1-x^{2}}}
$$

3. (11 points) Tschirnhausen's Cubic is the curve defined by the equation $3 y^{2}=x^{2}(1-x)$.
(a) (5 points) Use implicit differentiation to find the slope $\frac{\mathrm{d} y}{\mathrm{~d} x}$ of a tangent line to the Tschirnhausen's cubic.
(b) (3 points) Show that the point $(x, y)=(1 / 2,-1 / \sqrt{24})$ lies on the curve.
(c) (3 points) Find the slope of the tangent line to the curve at the point $(x, y)=(1 / 2,-1 / \sqrt{24})$.
4. (15 points) Consider the function

$$
f(x)=x^{2}-2 x-4 \log (|x|)
$$

where $\log (x)$ is the natural logarithm.
(a) (4 points) Find the critical points of $f(x)$.
(b) (5 points) Using the second derivative test, or otherwise, determine whether the critical points are maxima, minima or inflection points.
(c) (6 points) $f(x)=0$ when x is approximately 0.8 and 3.4. Use this, and your answers to the first two parts, to sketch the graph $y=f(x)$.

