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Abstract

The idea of topologically twisting a supersymmetric field theory was introduced in the physics literature in
order to generate interesting new examples of topological field theories. The idea is very general, but systemat-
ically realising the examples it produces using mathematical models for topological quantum field theory (such
as the functorial axioms of Atiyah-Segal or the theory of E, -algebras) is not always possible. In this talk Il
explain what it means to twist a supersymmetric field theory in the factorization algebra framework developed
by Costello and Gwilliam, and address the question of just how topological these topologically twisted theories
really are. This is based on joint work with Pavel Safronov.

Introduction

1 Lecture 1 — Supersymmetric Field Theory

1.1 Classical Field Theory

We'll begin with an introduction to the mathematical formalism underlying classical (perturbative — meaning we
study perturbations of a fixed classical configuration) field theory following the approach of Costello and Gwilliam.
Everything I'll discuss today can be generalised, with some work, to perturbative quantum field theory, and while
I’ll mention that from time to time I won’t discuss it in any detail. We’ll see that there’s a rich and interesting
story to tell even at the classical level. There are two points of view on classical field theory that I’ll discuss:

e Fields: modelled by a sheaf of dg Lie algebras.

e Observables: modelled by a factorization algebra with a (—1)-shifted Poisson algebra structure.

These two models are Koszul dual to one another with respect to the Lie structure on the fields and the multiplication
on the local observables. The Poisson bracket on the observables arises from an additional piece of data that we fix
on the fields, a shadow of the action functional.

1.1.1 The BV-BRST Complex

The BV-BRST formalism is a model for the space of fields in a classical field theory, modulo the action of symmetries,
and after imposing the condition that the fields are critical points for an action functional. In the BV formalism
we impose these equations in a derived sense, so the BV complex will in particular be a cochain complex where
H' describes solutions to the linearised equations of motion modulo gauge, but where the cohomology outside of
degree 1 is non-zero, modelling derived directions in the moduli space of solutions.
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Definition 1.1. A classical field theory on R™ is a sheaf of dg Lie algebras L on R™ (or more generally an L .-
algebra) equipped with an invariant antisymmetric pairing of degree —3 valued in the sheaf of densities on R™
(sometimes called the antibracket). In order to match up with the physics terminology we’ll refer to this sheaf of
Lie algebras as the BV-BRST complez of the theory.

Remark 1.2. This definition is a shadow of a “non-perturbative” model for a classical field theory, which we might
model by a sheaf of (—1)-shifted Poisson stacks, which we obtain as the derived critical locus of an action functional.
The complex above models the (—1)-shifted tangent complex of such a stack.

Example 1.3. To give a flavour of the sort of dg Lie algebra we have in mind, let’s give the example of Chern-
Simons theory. This is a 3d classical field theory whose BV-BRST complex is the de Rham complex with coefficients
in a simple dg Lie algebra: L(U) = (2*(U;g),dar). This has a Lie bracket by wedging the forms and bracketing
the Lie algebra factors, and a pairing of degree —3 by wedging and applying the Killing form. One can obtain this
sheaf on any oriented 3-manifold M as the —1-shifted tangent complex of the stack Flatg(M) of flat G-bundles.

1.1.2 The Classical Factorization Algebra

To introduce the other model of a field theory, let me first explain what exactly a factorization algebra is. The idea
is that we can model observables in a field theory on each open subset of spacetime (i.e. of R™), along with the data
of how to extend observables from a smaller open set to a larger one. That is, we’ll describe a kind of precosheaf.

Definition 1.4. A prefactorization algebra on R™ is a “multiplicative” precosheaf Obs of vector spaces on R".
That is, an assignment of a vector space Obs(U) to each open set with the property that Obs(U UV) = Obs(U) ®
Obs(V), along with structure maps @, Obs(U;) — Obs(V) for each pairwise disjoint collection of open subsets
Ui,...,U, CV satisfying the natural compatibility conditions. A factorization algebra on R™ is a prefactorization
algebra which satisfies descent for covers {U; } of open sets U satisfying the condition that for any sequence of points
Z1y...,2Zn in U there is an element U; of the cover so that {z1,...,2,} C U;. Such covers are known as Weiss
covers.

The idea here is that the local sections Obs(U) on an open set U model the (classical or quantum) observables of a
theory that depend only on measurements inside of U, so in particular there’s a canonical extension (our structure
maps) Obs(U) — Obs(V) for every pair of open sets U C V. The sheaf condition is intended to convey the idea
that all observables are determined by their values on arbitrarily small neighbourhoods of finite sets of points.

Now, of course there’s a connection between these two constructions. Given a classical field theory — modelled
by a sheaf of Lie algebras — one can construct a factorization algebra which models its classical observables. The
antibracket pairing on the fields turns into a Poisson bracket on the observables.

Definition 1.5. Recall that the Chevalley-Filenberg cochain complex of a dg Lie algebra g is the cochain complex
C*(g) = Sym(g*[—1]) with differential coming from the dual of the differential on g and the dual to the Lie bracket
g®g — g, extended as a derivation. The algebra of classical observables of a sheaf L of Lie algebras is the
prefactorization algebra that assigns to an open set V' the complex

Obsp (V) := C*(L(V)).

In fact, in reasonable examples this prefactorization algebra is a factorization algebra (see [CG16, Chapter 6 Theorem
5.2.1] for the precise statement).

If L is a classical field theory, i.e. carries a degree —3 invariant pairing, then the classical observables Obs; has
the structure of a factorization algebra in the category of Py-algebras. A Py structure on a commutative dga A is
a Poisson bracket of degree 1: that is a Lie bracket {,}: A ® A[—1] — A of degree 1 which is a derivation for the
product.

Remark 1.6. In this talk I won’t say very much about quantization. The twisting story I’ll describe will make
sense for any classical field theory with an action of a supersymmetry algebra. It’s not too difficult to construct
quite a few examples of classical supersymmetric field theories — we’ll discuss some examples of this form later in the
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talk — but one needs to take care when quantizing: it’s possible for the supersymmetry action to be anomalous, i.e.
to not lift to an action at the quantum level. This is one source of “non-topological” behaviour for a topologically
twisted quantum field theory: even though one might have a perfectly topological theory at the classical level which
makes sense on all oriented manifolds, there could be an anomaly that prevents the theory from being globally
defined at the quantum level.

1.2 Supersymmetry Actions

Having defined a classical field theory, let me talk about supersymmetry. In order to explain what it means for a
field theory to be supersymmetric I'll need to discuss more broadly what it means for a Lie algebra to act on a field
theory (either viewed in terms of its BV-BRST complex or as a factorization algebra of observables), and then I’ll
need to tell you what a “supersymmetry algebra” is.

1.2.1 Lie Algebra Actions

Since we gave two dual descriptions of a classical field theory, there will be correspondingly two dual descriptions
of a Lie algebra action on a field theory. We’ll describe these notions and how they relate to one another, and we’ll
explain the slightly more subtle notion of Poincaré invariance (the correct notion for our purposes will involve more
data than just an infinitesimal action of the Poincaré algebra).

First let’s talk about the action of a dg Lie algebra on a classical field theory. This is fairly straightforward — we
just need to say what it means for one Lie algebra to act on another.

Definition 1.7. We say a dg Lie algebra g acts on a classical field theory L on R™ if there is a homomorphism of
sheaves of dg Lie algebras g — Der(L(U)), where g denotes the constant sheaf with fiber g.

Remark 1.8. This definition needs a bit of modification for L..-structures. Costello and Gwilliam define an action
by defining the semidirect product. That is, they say an L., algebra action is an L, structure on g @ L(R™) such
that the short exact sequence

0—L(R") - g® LR") -g—0

is a sequence of Lie algebras.

Remark 1.9. There’s no reason why we had to consider a single Lie algebra g and not a sheaf of Lie algebras —
we could’ve considered local symmetries instead of global symmetries. It’s worth mentioning one local Lie algebra
that we see acting on field theories that depend on a metric (i.e. families of field theories over the moduli space
of metrics modulo diffeomorphisms). There’s a sheaf of dg Lie algebras on R™ associated to a choice gy of metric
given by
Liin = Ty, — Sym® T,

placed in degrees 0 and 1, where the differential sends a vector field X to the Lie derivative £x(go) and the
bracket is also defined as the Lie derivative. We call this the Lie algebra of Killing vector fields after the kernel of

the differential. One observes that this is the —1-shifted tangent complex to the moduli space of metrics modulo
diffeomorphisms.

Now let’s discuss what it means for a Lie algebra to act on a factorization algebra.

Definition 1.10 ( [CG16, 4.8.1.2]). A degree k derivation of a factorization algebra Obs on R™ is a cohomological
degree k endomorphism Fyr: Obs(U) — Obs(U) for each open set U in R™ that collectively satisfy a Leibniz rule.
That is, if Uy,...,U,, C V are disjoint open subsets of an open set, and mghm,Um is the associated factorization
map, we require that

m

Fyomp, g, (01,...,0p)=> (=)0 HOmImy ) (01, Fu,(0:), ..., Om).

i=1
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The algebra Der®(Obs) of derivations of arbitrary degree is naturally a dg Lie algebra, with the bracket defined on
each open set, and the differential defined by (dF)y = [du, Fu].

Definition 1.11. If g is a dg Lie algebra and Obs is a factorization algebra on R™, an action of g on Obs is a
morphism g — Der®(Obs) of dg Lie algebras.

In the context of classical field theory we’ll often restrict attention to inner actions of dg Lie algebras on the classical
observables. If Obs is a Py factorization algebra then there is a map of dg Lie algebras Obs(R™)[—1] — Der®(Obs)
defined by O — {0, —}.

Definition 1.12. A g action g — Der®(Obs) is inner if it factors through a dg Lie map g — Obs(R™)[—1]. The
shift here makes the right hand side into an unshifted dg Lie algebra.

Of course, a g action on a classical field theory L and a g action on its factorization algebra of observables are
closely related.

Proposition 1.13. Given a dg Lie algebra g and a classical field theory L with factorization algebra of classical
observables Obs, any g-action on L induces a canonical g-action on Obs.

From now on for simplicity we’ll consider examples where the induced g-action on Obs is inner. In general there’s
an obstruction, so any g-action on L induces an inner action of a central extension of g on Obs. In just a moment
T’ll remark on why this issue won’t be important for the ideas I'll be discussing today.

Definition 1.14. A factorization algebra on R"™ is Poincaré invariant if

1. Tt receives an inner action of the Poincaré algebra iso(n) as in definition we’ll denote the derivations
corresponding to translation and rotation generators by 0; and «;; respectively.

2. There are isomorphisms 74: Obs(U) — Obs(A(U)) for each isometry A € ISO(n) and each open set U

compatible with the factorization structure, and where 74 o 75 = T4p. Given disjoint open sets Uy, ..., U, C
V and isometries Aq,..., Ay such that the 74,(U;) are still disjoint and contained in V, if we denote by
ma, ..a,: Obs(Up) x ---x Obs(Uy) — Obs(V) the map that first acts on each local observable by an isometry

then composes using the factorization algebra structure, we require that the maps my,, . 4, vary smoothly
in (1417 N ,Ak)

3. These two structures are compatible in the following sense:

(oo 1,001, D,
and (1,..., L, a45,1,...,)ma, . 4, (01,...,08) =ma, ... 4, (01,...,00...,0k)

where 0; and o; are placed in the %0 slot on the left-hand side.

Remark 1.15. So why don’t we need to be careful about the distinction between inner actions and more general
actions? In general a non-inner action of the Poincaré group defines an inner action of a central extension of the
Poincaré group on the classical observables. While Poincaré groups do admit non-trivial central extensions, the
groups SO(n) do not, which means that there’s always at least a smooth inner SO(n)-action on the observables. As
we’ll see, today we’ll only need to consider the actions of R™ and of SO(n) separately, which are necessarily always
inner.

Definition 1.16. The Lie algebra Lk;j of Killing vector fields includes the Poincaré algebra as a subalgebra. We
say a Poincaré invariant factorization algebra on R™ is locally covariant if the infinitesimal Poincaré action extends
to an inner action of Lij. The image of Sym? Tk~ under the inner action is called the (gravitational) stress-energy
tensor of the theory. It corresponds to the variation of the action functional with respect to a deformation of the
background metric on R™.
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1.2.2 Supersymmetry Algebras

An n-dimensional superpoincaré algebra of signature (p,q) where p + ¢ = n is a Lie superalgebra extending the
algebra iso(p, q) of isometries of RP?. For simplicity, from now on we’ll focus on the case of Euclidean signature,
g = 0. There is a superpoincaré algebra associated to each choice of spinorial representation of so(n). Let’s be more
precise.

Choose a real spinorial representation S of the group SO(n) along with an symmetric so(n)-equivariant bilinear
pairing I': S ® S — R™. There is a lot of terminology associated to this choice; one typically finds that there is
either one minimal representation that admits such a pairing, in which case S = S.  or there are two such minimal
representations, in which case S = S{Vl D Sévz. We say that there are N or (N1, No) supersymmetries and often talk
about e.g. the “N = 4 supersymmetry algebra”. Once such an S is chosen the pairing I" is determined uniquely up
to rescaling.

Definition 1.17. The superpoincaré algebra associated to the representation S is the super Lie algebra iso(n) x ILS
El with one additional bracket from S ® S to R™ defined by the pairing T'.

Definition 1.18. The group of R-symmetries is the group of outer automorphisms of the superpoincaré algebra
that act trivially on the bosonic part. Typical supersymmetric field theories will carry an action of some subalgebra
gr of the Lie algebra of R-symmetries compatible with the superpoincaré algebra, but not necessarily an action of
all R-symmetries. One often considers not the superpoincaré algebra but the supersymmetry algebra

ar X (iso(p, q) x I1S)

associated to this choice of R-symmetry action, where gr acts on S.

With both of these ingredients in hand, we can finally say what a supersymmetric field theory is.

Definition 1.19. A classical field theory on R" is supersymmetric (for the superpoincaré algebra A) if it is Poincaré
invariant and the infinitesimal inner action of iso(n) extends to an inner action of the supersymmetry algebra A.

2 Lecture 2 — Topological Twists

2.1 The Idea of Twisting

Now, we can finally say what it means to twist a classical field theory. On the level of the BV-BRST complex this
construction is actually quite simple.

Definition 2.1. Let Q be a square-zero supercharge, i.e. an element of S where Q2 = 0, or equivalently [Q, Q] = 0.
We say Q is topological if the map [Q, —]: S — R" is surjective. We say @ is holomorphic if n is even and the image
of the map [Q, —] has dimension n /2.

A set of twisting data is a pair (Q,«) where @ is a square-zero supercharge and « is a U(1) subgroup of the
R-symmetry group so that @) has a-weight 1. Given a supersymmetric classical field theory with an action of the
group of R-symmetries, a choice of twisting data defines an action of the group C* x IIC of automorphisms of the
odd affine line.

The following can be argued straighforwardly.

Proposition 2.2. Let L be a supersymmetric field theory on R™, and let (Q, @) be a set of twisting data acting on
L. The action of the group C* x IIC defines a new grading and differential on L (the new grading is the a-weight
and the differential is the @Q-action). Form the total complex with respect to the original dg-structure and this
new dg-structure. The resulting complex L(®®@) is still a classical field theory — we call this the twisted field theory
associated to our choice of twisting data.

IThe notation IT means that S is placed in fermionic degree.
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Remark 2.3. If we didn’t choose the U(1)-action o the above proposition would still have been true, but we
wouldn’t have obtained a sheaf of dg Lie algebras with a degree —3 pairing, but rather a sheaf of super Lie algebras
with an odd pairing. In other words our Z-grading would have collapsed to a Z/2-grading.

Remark 2.4. There’s a way of producing topological supercharges which is very important both physically and
(as we’ll see) mathematically. Suppose we have a supersymmetric theory with an action of an R-symmetry group
Gpr. We can “twist” the supersymmetry algebra by choosing a homomorphism ¢: so(n) — gg and changing the
action of so(n) on S according to this action. If a square-zero supercharge @ is fixed by this new so(n) action
then the image of [@, —] in R™ is an irreducible so(n)-representation; it’s non-trivial because the pairing on spinors
was non-degenerate, which means it must be all of R™, meaning that @ was topological. We say such a @ is a
topological supercharge associated to the twisting homomorphism ¢. We’ll talk a bit more about the role played
by these twisting homomorphisms later.

At this point an obvious but important question presents itself: what can we say about the factorization algebra
associated to this twisted theory? In particular, what does it mean for @ to be a topological supercharge from this
point of view? In the rest of the talk I’ll talk about the answer to this question. In what remains of this section
T'll give some straightforward initial observations. We’ll denote the map A — Obs[—1] defining our supersymmetry
action by v. The following claim follows immediately from the definition of the factorization algebra of classical
observables.

Proposition 2.5. Up to regrading, the classical observables of the twisted theory are equivalent to the algebra of
classical observables of the original theory where we add the operator {v(Q),—} to the differential.

If we bear this in mind, along with the fact that v is a Lie algebra homomorphism, if ) is a topological supercharge
then for any translation x; there exists a supersymmetry (); where

v(z) = v([Q, Qi]) = {»(Q), »(Q:)}-

Therefore, since v(Q;) is closed for the differential in Obs, in the @Q-twisted field theory the element v(x;) is
homotopically trivial. This is our simple key observation.

Observation 2.6. In a topologically twisted theory, all translations act homotopically trivially. We call such a
theory de Rham translation invariant.

2.2 Twisted Theories and E,-Algebras

Let’s run with observation and see where it leads us. The story I'll tell here will follow very closely the
construction of vertex algebras from holomorphic field theories on C demonstrated by Huang [Hua94] and Costello-
Gwilliam [CG16| Chapter 5, Theorem 2.2.1]. T’ll sketch an argument which says that there’s a canonical way —
under certain fairly mild assumptions — of associating an [E,-algebra to any topologically twisted theory.

Remark 2.7. You might be aware of a theorem of Lurie’s [Lur| which says that an E,-algebra is equivalent to
a factorization algebra on R™ which is locally constant, meaning that given any inclusion U < V of contractible
open subsets of R™ the factorization map Obs(U) — Obs(V) is a quasi-isomorphism. Lurie’s result however is not
constructive, whereas the result I'll discuss today produces an algebra over a specific model for the E,, operad from
a suitably topological factorization algebra.

To any Poincaré invariant (or just translation invariant) factorization algebra Obs we can assign an algebra over a
certain coloured operad, or dually a coalgebra over a coloured cooperad, as explained in [CG16, Chapter 4, Section
8.2].

Definition 2.8. Define Discffl to be the R g-coloured operad whose space of degree k morphisms from (r1,...,7%)
col

to s is the space Discy,” (r1, ..., 7%|s) of isometric embeddings B,, U---UB,, — B, where B, is the open ball of
radius r with closure B,., and with the obvious composition maps.
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Construction 2.9. Given a translation invariant factorization algebra Obs, define A, to be Obs(B,(0)): the
algebra assigned to the unit ball of radius r about 0. The set {A,},cr., can be made into a Disci*-algebra by
sending an embedding F' € Disc;‘ﬂ(rl7 ..., Tk|s) where the k balls have centers 1, ...,z to the operation

Ap, X oo X Ay, = Obs(By, (z1)) X -+ X Obs(By, (z1)) — As,

where the first arrow is the equivalence coming from translation invariance, and the second arrow is given by the
factorization structure.

If we prefer, we can view {A,} as defining a coalgebra over the Rsg-coloured cooperad C'*°(DiscS!). We'll take this
point of view, and make a simplifying assumption.

Definition 2.10. We say a factorization algebra is rescaling invariant if the factorization map fact, r associated
to an embedding of concentric balls around the origin is a quasi-isomorphism.

Proposition 2.11. If a translation invariant factorization algebra is actually de Rham translation invariant, then
the corresponding C> (DiscS®)-coalgebra lifts to an Q°(Discc®)-coalgebra, or dually to a C4(Discc®)-algebra.

Theorem 2.12. There is a fully faithful embedding
E,-alg — C,(Disct®)-alg

whose essential image consists of those C4(Discc!)-algebras which are rescaling invariant.

So the upshot is that, given a topologically twisted factorization algebra, its observables form an E, algebra, in a
concrete way, as long as we verify a single condition: rescaling invariance. It is possible to verify this condition in
examples, for instance when we can define an action of the dilation group R on the twisted theory.

Example 2.13 (Superconformal Field Theories). Superconformal groups are supersymmetric extensions of the
groups of conformal transformations of R™. If a supersymmetric field theory is actually superconformal then, in
particular, it admits an action of the group of dilations. If additionally the supercharge @ is dilation invariant then
the action of dilations survives twisting. In this context one always ends up with a homotopically trivial dilation
action.

However, usually the supercharge @ will not be dilation invariant. One needs to modify the dilation action using
the R-symmetry group in order to make it dilation invariant. In superconformal theories (always in dimensions
> 3 and in the interesting examples in dimension < 3) this is possible, fairly explicitly. So topological twists of
superconformal field theories always define E,,-algebras.

2.3 Twisting Homomorphisms and G-Structured Theories

Now, factorization homology as defined by Ayala and Francis produced a framed functorial field theory from an
E,-algebra. When is this theory actually oriented? When the E,-algebra admits a compatible action of the group
SO(n). In our setup we can construct such an SO(n) action, again, in a very general context, motivated by the
constructions appearing in the physics literature.

Definition 2.14. A square-zero supercharge @ is compatible with a twisting homomorphism ¢: SO(n) — Gg if
Q is fixed by the subgroup SO(n) C SO(n) x G defined by the map (1,¢). More generally one can consider
supercharges compatible with a twisting homomorphism from a subgroup G C SO(n).

If @ is compatible with a twisting homomorphism ¢ then the associated G-action survives to a G-action on the Q-
twisted factorization algebra. This is, however, not quite enough to obtain a G-action on the associated E,-algebra.
For that we need something more.

Definition 2.15. A smooth Ggqgr-action is a smooth G-action along with a homotopy trivialization of the infinites-
imal g action.
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Theorem 2.16. If a de Rham translation invariant and rescaling invariant factorization algebra admits a compatible
smooth Gqr action for some subgroup G C SO(n) then the corresponding E,,-algebra lifts to a G x E,-algebra.

So when can we lift the twisting G-action to a Gqr-action? Well, to first order we can answer this question using
the gravitational stress-energy tensor.

Definition 2.17. Let Obs be a locally covariant factorization algebra as in definition [[.9} The gravitational stress-
energy tensor is the map Sym? Trn — Liin — Obs[—1].

Theorem 2.18. If Obs is a locally covariant factorization algebra on R™, @) is a topological supercharge compatible
with a G-twisting homomorphism ¢, and the ¢-twisted gravitational stress-energy tensor is QQ-exact, then the G-
action on the Q-twisted theory is Q-exact.

This isn’t enough alone to get a Ggr-action — for that we need some conditions on the potential guaranteeing that
we have a Lie trivialization. An alternative origin of G4r-actions is from superconformal theories.

Theorem 2.19. If Obs is an N = 2 or more superconformal theory in dimension 2 or an N = 4 or more supercon-
formal theory in dimension 3 or 4, and @ is a topological supercharge of maximal rank compatible with a twisting
homomorphism from Spin(n), then the twisted SO(n)-action extends to an SO(n)qr-action.

The proof of this theorem proceeds by direct calculation in the superconformal algebra.

2.4 Examples

T’ll conclude with a discussion of a few interesting examples.

Examples 2.20. 1. 2d Superconformal Theories — The A- and B-models.

One can do this analysis explicitly in the example of 2d N = 2 superconformal field theories. These are 2d
N = 2 supersymmetric field theories where the supersymmetry action extends to an action of the N = 2
super Virasoro algebra. One checks that one can twist the NV = 2 super Virasoro algebra so that not only
the translations but also the rotation is Q-exact. One can use this to define a twisted N = 2 superconformal
field theory where the gravitational stress-energy tensor vanishes, and therefore an oriented 2d field theory.
Witten’s 2d A-model and B-model arise from this N = 2 superconformal story as twists of a supersymmetric
sigma model (see Ben-Zvi-Heluani-Szczesny [BZHS08] where a vertex algebra construction is presented as
the chiral de Rham complex, following work of Malikov—Schechtman—Vaintrob [MSV99] who proved that the
chiral de Rham complex carries an action of the super Virasoro algebra).

2. 4d N = 4 theories — Vafa-Witten and Kapustin-Witten.

[VW94, [ KWO07,Set13] In the 4d N = 4 supersymmetry algebra there are several natural twisting homomor-
phisms that we might choose. The R-symmetry group acting on 4d N = 4 is SL4, so working with complexified
Lie algebras twisting homomorphisms are homomorphisms sl (C) @512 (C) — sl4(C). The two most important
examples are the Vafa-Witten twist ¢yw which sends (4, B) to the block diagonal matrix diag(A4, 4), and
the Kapustin-Witten twist ¢xw which sends (A, B) to the block diagonal matrix diag(A, B). With respect
to the Vafa-Witten twist there is a single topological supercharge, and with respect to the Kapustin-Witten
twist there is a CP!-family of topological supercharges. The Vafa-Witten twisted theory [VW94] is obtained
from the Vafa-Witten twisting homomorphism and supercharge, so defines a 4d oriented theory.

In their paper [KWO07], Kapustin and Witten define a CP*' of topological twists of 4d N = 4 theory. These
twists can be viewed as the CP' of topological twists that factor through a given holomorphic twist, which is
automatically invariant under U(2) C SO(4) so defines a theory on arbitrary complex surfaces. However only
a single point in this CP'-family (the so-called “A” point) is invariant for the twisted SO(4)-action. In general
the family is only invariant under SO(2) x SO(2), so defines a theory on products of oriented surfaces. We
should emphasise that this is a purely perturbative story. If one works with the whole stack of local solutions
to the equations of motion then there are additional subtleties relevant for the geometric Langlands program.
I'll talk about some of these issues in my lecture series this week (or you can see [EY15,[EY17]).
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Remark 2.21. In his thesis [Set13], Setter calculates the Vafa-Witten and Kapustin-Witten twisted theories
explicitly, and in particular finds an agreement between the Vafa-Witten twisted theory and the Kapustin-
Witten B-twist after reducing on a circle. One can also see this from our perspective without needing to do
an explicit calculation, since the Vafa-Witten and Kapustin-Witten twisting supercharges coincide, and while
the twisted SO(4)-actions are different they agree when one restricts to an SO(3) subgroup.

8d N =1 theories and their dimensional reductions.

[AOS97] The 8d N = 1 supersymmetry algebra is interesting in that it admits topological supercharges — it’s
the only non-trivial minimal supersymmetry algebra with this property (with 16 or fewer supercharges). There
are various ways of seeing this, one way is to check that one can identify the two semispin representations with
copies of the complexified octonions, and the complex I'-pairing S, ® S_ — C® with complexified octonion
multiplication. From this point of view, clearly all Weyl spinors square to zero and all complexified octonions
which are not zero divisors are topological.

The topological twist of 8d N = 1 super Yang-Mills theory has been studied by Acharya, O’Loughlin and
Spence |[AOS97|. They computed the twist and verified that the gravitational stress-energy tensor vanishes.
They argue that this 8d theory is defined on arbitrary Spin(7)-manifolds. From our point of view this is easy
to see: under the defining embedding Spin(7) — SO(8) the semispin representations split off a one-dimensional
summand. If we twist by a topological supercharge in this summand we obtain a Spin(7)-invariant theory,
and therefore a Spin(7)-topological field theory in 8-dimensions. This theory has interesting dimensional
reductions: to a theory in 7d defined on Gs-manifolds and a theory in 6d defined on Calabi-Yau 3-folds. It
would be interesting to connect these topologically twisted theories to topics studied in mathematics, perhaps
Donaldson-Thomas theory and its categorifications?
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