NORTHWESTERN MASTERCLASS
HEEGAARD FLOER LECTURE SERIES
HOMEWORK 3

(1) Verify that % = 0 for the toy model of CFD for each of the domains in Figure 1.
(I've done the first one for you, so you see what I mean.)

(2) Verify that CFA is a differential module for each of the domains in Figure 2.
(Again, I've done the first one for you, so you see what I mean.)

(3) There is a unique pointed matched circle Z; for the torus. The corresponding
algebra A(Z;) is 8-dimensional (over [F3). Describe it explicitly in terms of
generators and relations and/or as a path algebra with relations.

(4) Figure 3 gives three bordered Heegaard diagrams for solid tori. Compute the

invariant @(”H) (which is a differential module over the algebra from Prob-
lem 3) for each of these diagrams H.

Remark. Solutions to Problems (1) and (2) can be found in [2], and solutions to
Problems 3 and 4 can be found in [1, Section 11.2].
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FIGURE 1. Examples illustrating 0> = 0 for CFD. In part

(a), for instance, 9*({a,c}) = d(a(pem){b,ct + a(p;i){a,d}) =

a(pem)alpi){b,d} + a(pij)a(pem){b,d} = 0. The darker shading in-

dicates regions involved with multiplicity 2. This figure is drawn from [2].
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FiGure 2. Examples illustrating that CFA respects
the relations on the algebra. In part (a), for instance,
ma(ma({a, ¢}, alpij)), alpem)) = ma({b,c} alpem)) = {bd} =

mao({a,d}, a(p;;)) = ma(ma({a,c}, pem), pi;). Again, this figure is drawn

from [2].
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FiGURE 3. Heegaard diagrams for solid tori. Each diagram lives on
a torus minus a disk, and each diagram is draw in two ways. The arrows
indicate edge identifications; the circles labeled by A denote handles;
delete the interiors and identify the boundaries of these circles.



