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ABSTRACT. These are notes with my lectures at the University of Massachusetts, Amherst summer
school on the Physical Mathematics of Quantum Field Theory.

INTRODUCTION

The moduli space Mg,n of n-pointed (Deligne-Mumford) stable curves of genus g provides a
natural environment in which we may study smooth curves and their degenerations. These spaces,
for different values of g and n, are related to each other through systems of tautological maps.
Algebraic structures on Mg,n often reflect this, being governed by recursions, and amenable to
inductive arguments. For these and other reasons, such structures are generally easier to work
with. Sheaves on the moduli space of curves given by representations of vertex operator algebras
(VOAs for short) exemplify this.

VOAs generalize commutative associative algebras as well as Lie algebras, and have played deep
and important roles in both mathematics and mathematical physics. For instance, in understanding
conformal field theories, finite group theory, and in the construction of knot invariants and 3-
manifold invariants. Given nice enough VOAs and categories from which modules are selected,
sheaves of coinvariants behave functorially with respect to these tautological maps.

In the first lecture, I will introduce the moduli spaces of curves that are involved in the con-
struction, and also some of the questions that the sheaves may help answer. In lecture two I will
introduce vertex operator algebras, and their modules giving some examples. In lecture three I
will describe the sheaves of coinvariants and dual sheaves of conformal blocks, describing some
of their important features. In the last lecture I will discuss a number of open problems.

1. LECTURE 1: THE MODULI SPACE OF CURVES AND VERTEX OPERATOR ALGEBRAS

A moduli space is a variety (or a scheme or a stack) that parametrizes some class of objects.
The general moduli/parameter spaces philosophy goes something like the following:

• Objects X (like varieties with properties in common) can often correspond points in a
moduli space M. By studying M one can learn about X .

• Points [X] ∈ M with good properties often form a large (dense) open subset of M.
• Points [X] ∈ M that don’t have good properties occupy closed (proper) subsets of M.

The worse these points are, the smaller their ambient environment.
1
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Today we will apply this philosophy to Mg, the moduli space of n-pointed Deligne-Mumford
stable curves of genus g ≥ 2. One dimensional algebraic varieties, arguably the simplest objects
one studies, can be better understood as points on moduli spaces of curves. As curves arise in
many contexts, moduli of curves are meeting grounds where a variety of techniques are applied in
concert. In algebraic geometry, moduli of curves are particularly important: they help us under-
stand smooth curves and their degenerations, and as special varieties, they have been one of the
chief concrete, nontrivial settings where the nuanced theory of the minimal model program has
been exhibited and explored [HH09,HH13,AFSvdW17,AFS17a,AFS17b]. They have also played
a principal role as a prototype for moduli of higher dimensional varieties [KSB88, Ale02, HM06,
HKT06, HKT09, CGK09].

It is not uncommon to refer to certain varieties as combinatorial: these include toric varieties:
like projective space, weighted projective spaces, and certain blowups of those, Grassmannian va-
rieties, or even more generally homogeneous varieties. These all come with group actions, and
combinatorial data encoded in convex bodies keeps track of their important geometric features.
Certain varieties like moduli of curves, have combinatorial structures reminiscent of varieties that
are more traditionally considered to be combinatorial. As a result, various analogies have been
made between them and the moduli of curves. Such comparisons have led to questions and con-
jectures, surprising formulas, and even arguments that have been used to detect and to prove some
of the most important and often subtle geometric properties of the moduli space of curves.

As we shall see today, by looking at loci of curves with singularities, we are led to the study
of moduli spaces Mg,n, parametrizing stable n-pointed curves of genus g. We’ll also see that
these spaces, for different g and n, are connected through tautological clutching and projection
morphisms, give the system and these spaces a rich combinatorial structure. Algebraic structures
on Mg,n reflect this, and are often governed by recursions, and amenable to inductive arguments.
Consequently, many questions can be reduced to moduli spaces of curves of smaller genus and
fewer marked points. Problems about curves of positive genus can often be reduced to the smooth,
projective, rational variety M0,n, which can be constructed in a simple manner as a sequence of
blowups of projective spaces. Today we will talk about this.

As you can see from other more complete surveys [Har84, Far09, Abr13, Coş17], this is a long
studied subject with many points of focus!

1.1. Why moduli? The basic objects of study in algebraic geometry are varieties (or schemes or
stacks). Zero sets of polynomials give algebraic varieties. The simplest are lines, which as can be
seen in the picture below, taken together form varieties:

When learning about algebraic geometry, one typically starts with affine varieties, which in their
simplest form are the zero sets of polynomials in some number of variables. Soon we learn that it
is useful to homogenize those polynomials so we can study projective varieties for which there is
more theory available. For instance, zero sets of degree d polynomials define curves in the affine
plane, and homogeneous polynomials of degree d in three variables determine curves in P2, which
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FIGURE 1. Imagining projective lines and spaces.

we can classify according to their genus

g =
d(d− 1)

2
.

The genus of a curve is an invariant: If two curves have different genera, they can’t be isomorphic.
As some of you will discuss in the problem sessions, there are more geometric ways to define this
number. For instance, the genus of a smooth curve C is

g = dimH0(C, ωC) = dimH1(C,OC),

where ωC is the sheaf of regular 1-forms on C. If defined over the field of complex numbers, we
may consider C as a Riemann surface, and the algebraic definition of genus is the same as the
topological definition.
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FIGURE 2. Picturing genus.

The simplest examples of plane curves have genus zero. These can be obtained as zero sets of
conics in two variables:

fα•(x1, x2) =
∑

j,k≥0,j+k≤2

αjkx
j
1x

k
2.

or as homogeneous polynomials of degree 2:

Fa•(x0 : x1 : x2) =
∑

i,j,k≥0

i+j+k=2

aijkx
i
0x

j
1x

k
2.

Note that the element

a• = [a200 : a110 : a101 : a020 : a011 : a002] ∈ P5
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determines the zero set Z(Fa•) ⊂ P2. In other words, there is a 5 dimensional family of rational
curves. If we ask for only those curves that pass through a fixed set of points, say

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], and p4 = [1 : 1 : 1],

then since every point imposes a linear condition on the coefficients, we obtain a one dimensional
family of 4-pointed rational curves. 
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FIGURE 3. Families of 4-pointed rational curves.

Plane curves of genus 1 can be obtained as zero sets of cubic polynomials, and we can write
down the general curve of genus 2 using the equation:

x2
2 = x6

1 + a5x
5
1 + a4x

4
1 + · · ·+ a1x1 + a0.

In other words, a point (a0, . . . , a5) ∈ A6 determines a curve of genus 2, and there is a family of
curves parametrized by an open subset of A6 that includes the general smooth curve of genus 2.
As the coefficients change, the curves will sometimes have singularities.

1.2. Moduli of curves.

Definition 1.1. Mg is the moduli space of smooth curves of genus g, the variety whose points are
in one-to-one correspondence with isomorphism classes of smooth curves of genus g ≥ 2.

As smooth curves degenerate to curves with singularities, even if we just care about families of
smooth curves it is useful to work with a a compactification of Mg – a proper space that contains
Mg as a (dense) open subset. Such a space will necessarily parametrize curves with singularities.

We will consider the compactification Mg whose points correspond to Deligne-Mumford stable
curves of genus g. There are a number of choices of compactifications of Mg, and some of these
receive birational morphisms from Mg while others just receive rational maps from Mg. A few
examples are given in the Appendix.

Definition 1.2. A stable curve C of (arithmetic) genus g is a reduced, connected, one dimensional
scheme such that

(1) C has only ordinary double points as singularities.
(2) C has only a finite number of automorphisms.
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Remark 1.1. That C has finitely many automorphisms comes down to two conditions: (1) if Ci is
a nonsingular rational component, then Ci meets the rest of the curve in at least three points, and
(2) if Ci is a component of genus one, then it meets the rest of the curve in at least one point.

Definition 1.3. Mg is the moduli space of stable curves of genus g, the variety whose points are in
one-to-one correspondence with isomorphism classes of stable curves of genus g ≥ 2.

That such a variety Mg exists is nontrivial. This was proved by Deligne and Mumford who
constructed Mg using Geometric Invariant Theory [DM69]. In the second lecture we will see
Keel’s construction of the space M0,n.

This variety Mg has the essential property that given any flat family F → B of curves of genus
g, there is a morphism B → Mg, that takes a point b ∈ B to the isomorphism class [Fb] ∈ Mg

represented the fiber Fb.

1.2.1. How can studying Mg tell us about curves? Earlier we considered a family of curves
parametrized by an open subset of A6, that included the general smooth curve of genus 2. Gener-
ally, if there is a family of curves parametrized by an open subset of AN+1 that includes the general
curve of genus g, then one would have a dominant rational map from PN to our compactification
Mg. In other words, Mg would be unirational. This would imply that there are no pluricanonical
forms on Mg. Said otherwise still, the canonical divisor of Mg would not be effective.

On the other hand, one of the most important results about the moduli space of curves, proved
almost 40 years ago, is that for g >> 0 the canonical divisor of Mg lives in the interior of the cone
of effective divisors (for g = 22 and g ≥ 24, by [EH87, HM82], and for by g = 23 [Far00]). Once
the hard work was done to write down the classes of the canonical divisor, and an effective divisor
called the Brill-Noether locus, to prove this famous result, a very easy combinatorial argument
can be made to show that the canonical divisor is equal to an effective linear combination of the
Brill-Noether and boundary divisors when the genus is large enough.

The upshot is that by shifting focus to the geometry of the moduli space of curves, we learn
something basic and valuable about the existence of equations of smooth general curves. Neverthe-
less, basic open questions remain. First, our current understanding of such questions is incomplete
– it can be summarized in the following picture:
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So there is a gap in our understanding of the “nature” of Mg. On the other hand, even for those
g for which we know the answer, there are still problems to solve. For instance if Mg is known to
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be of general type, one can consider the canonical ring

R• =
⊕
m≥0

Γ(Mg,mKMg
),

which is now known to be finitely generated by the celebrated work of [BCHM10]. In particular,
the canonical model Proj(R•), is birational to Mg.

It is still an open problem to construct this model, and efforts to achieve this goal have both
furthered our understanding of the birational geometry of the moduli space of curves, as well as
giving a highly nontrivial example where this developing theory can be experimented with and
better understood.

Remark 1.2.2. We have described moduli spaces of curves as projective varieties. But in doing
so we gloss over some of what makes them moduli spaces. There is a functorial way to describe
moduli spaces which leads to their study as stacks.

1.2.3. A stratification. As we have seen in the examples above, even if we are only interested in
smooth curves, we are naturally led to curves with singularities, and when considering curves with
nodes, one is naturally led to curves with marked points.

The moduli space Mg is a (3g-3)-dimensional projective variety. The set δk(Mg) = {[C] ∈
Mg| C has at least k nodes} has codimension k in Mg. If k = 1, these loci have codimension one,
and the boundary is a union of components:

(1) The component ∆irr can be described as having generic point with a nonseparating node;
the closure of the locus of curves whose normalization is a curve of genus g − 1 with 2

marked points.
(2) Components ∆g1 = ∆g2 are determined by partitions g = g1 + g2. These loci can be

described as having generic point with a separating node – the closure of the set of curves
whose normalization consists of 1-pointed curves of genus g1 (and g2).

We may picture generic elements in these sets, and their normalizations, as follows:
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FIGURE 4. Clutching maps.

1.3. Moduli of pointed curves. By Mg,n we mean the quasi-projective variety whose points are in
one-to-one correspondence with isomorphism classes of smooth n-pointed curves of genus g ≥ 0.
By the compactification Mg,n, we mean the variety whose points are in one-to-one correspondence
with isomorphism classes of stable n-pointed curves of genus g ≥ 0.
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Definition 1.4. A stable n-pointed curve is a complete connected curve C that has only nodes as
singularities, together with an ordered collection p1, p2, . . ., pn ∈ C of distinct smooth points of
C, such that the (n+ 1)-tuple (C; p1, . . . , pn) has only a finite number of automorphisms.

To get a sense of its combinatorial structure, we note that the moduli space is stratified by
the topological type of the curves being parametrized. As we did last time in the case n =

0, we may describe these components of the boundary of Mg,n as δk(Mg,n) = {[(C,P •)] ∈
Mg,n| C has at least k nodes} in Mg,n (a space of dimension 3g − 3 + n). The locus δk(Mg,n)

has codimension k and is a union of irreducible components.

For instance, if k = 1, this codimension one locus is a union of components:

(1) ∆irr has generic point a nonseparating node; the closure of the locus of curves whose
normalization is a curve of genus g − 1 with n+ 2 marked points.

(2) ∆g1,N1 = ∆g2,N2 are determined by partitions g = g1 + g2 and {P 1, . . . , P n} = N1 ∪N2,
with generic point a separating node – the closure of the set of curves whose normalization
consists of pointed curves of genus g1 (and g2) with marked points in the set N1 (and N2)

As before, one can describe the components ∆irr and ∆g1,N1 as the images of attaching maps
from moduli spaces of stable curves with smaller genus (or with fewer marked points):

Mg−1,n+2 −→ ∆irr ⊂ Mg,n, and Mg1,n1+1 ×Mg2,n2+1 −→ ∆g1,N1 = ∆g2,N2 ⊂ Mg,n
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FIGURE 5. Tautological clutching maps.

There are also tautological point dropping maps, and using them we obtain n + 1 families of
stable n-pointed curves parametrized by Mg,n

πj : Mg,n+1 → Mg,n, si : Mg,n → Mg,n+1, i ∈ {1, . . . , n+ 1} \ {j}

where πj is the map that drops the j-th point, and si is the section that takes an n-pointed curve
(C; p⃗) and at the i-th point attaches a copy of P1 labeled with two additional points pi and pn+1.
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1.3.1. Comparing M0,n with moduli spaces of higher genus curves. The space M0,n has some
advantages over Mg,n for g > 0, for several reasons, three of which are easy to state. First M0,n is
a fine moduli space (it parametrizes pointed curves with no nontrivial isomorphisms), unlike Mg,n

for g > 0, which parametrizes curves with non-trivial automorphism. Second, M0,n is smooth,
whereas Mg,n for g > 0 has singularities. So there are tools like intersection theory that are easier
to carry out. Third, M0,n is rational (unlike Mg,n for g >> 0), making some arguments easier.

There are a number of constructions of M0,n, giving one different perspectives about the space,
and tools to work with it. For instance, Kapranov showed M0,n is a Hilbert (or Chow quotient) of
Veronese curves and can be seen as a quotient of a Grassmannian. There are at least four ways
to construct the space as a sequence of blowups. Finn Knudsen was first to observe this, showing
that M0,n+2 could be constructed as a sequence of blowups of M0,n+1×M0,n

M0,n+1 (this product is
not smooth), along non-regularly embedded subschemes. Keel improved this, giving an alternative
construction of M0,n as a sequence of blowups of smooth varieties along smooth co-dimension 2
sub-varieties. The first case where we see anything interesting is for the 2-dimensional space M0,5

which is the blow-up of P1 × P1 ∼= P1 ×pt P1.
As a result of his construction, Keel in [Kee92] showed that Chow groups and homology groups

are canonically isomorphic, giving recursive formulas for the Betti numbers, and an inductive
recipe for the basis of Chow rings, which he shows are quotients of polynomial rings (he gives the
generators and the relations). As an example, we know from Keel that there are 2n−1 −

(
n
2

)
− 1

numerical (or linear, or algebraic) equivalence classes of codimension 1 classes (divisors) on M0,n.
One may also use the projection maps and facts about M0,4, which is isomorphic to P1 to deduce
numerical equivalences of divisors on M0,n for all n. For instance, since Pic(P1) ∼= Z, one has that
on M0,4, all boundary divisor classes are equivalent. So in particular,

δij ≡ δik ≡ δiℓ, for {i, j, k, ℓ} = {1, 2, 3, 4}.

One can show, using the point dropping maps, that for n ≥ 4, on M0,n,

∑
I⊂{ijkℓ}c

δij∪I ≡
∑

I⊂{ijkℓ}c
δik∪I ≡

∑
I⊂{ijkℓ}c

δiℓ∪I , for any four indices {i, j, k, ℓ} ⊂ {1, . . . , n}.

1.4. Moduli of stable coordinized curves. ËMg,n is the stack parametrizing families of tuples
(C,P•, t•), where (C,P• = (P1, . . . , Pn)) is a stable n-pointed genus g curve, and t• = (t1, . . . , tn)

with ti a formal coordinate at Pi, for each i. A description of ËMg,n over the locus of smooth curves
is given in [ADCKP88] and [FBZ04, §6.5], and over the locus parametrizing stable curves with
singularities in [DGT21, §2]. By dropping the coordinates, there is a projection ËMg,n → Mg,n.
A group scheme (AutO)⊕n, defined below, acts transitively on fibers by change of coordinates,
giving ËMg,n the structure of an (AutO)⊕n-torsor over Mg,n. Moreover, AutO = Gm ⋉ Aut+O,
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and the projection factors as a composition of an (Aut+O)⊕n-torsor and a G⊕n
m -torsor:

(1) ËMg,n

(Aut+O)⊕n
''

(AutO)⊕n

// Mg,n

J g,n.
G⊕n

m

77

Here J g,n denotes the stack parametrizing families of pointed curves with first order tangent data.
Closed points in J g,n are denoted (C,P•, τ•), where (C,P•) is a stable n-pointed curve of genus
g, and τ• = (τ1, . . . , τn) with τi a non-zero 1-jet at a formal coordinate at Pi, for each i.

Remark 1.4.1. The sheaf of coinvariants on Mg,n is defined first on ËMg,n, shown to descend
to J g,n, and then if conditions are right, shown to descend to Mg,n using Tsuchimoto’s method,
as described carefully [DGT22a, §8]. At the moment, the complete description of the descent is
given only in case the conformal dimensions of modules are rational numbers. We are working on
descent in greater generality, but for this reason, I will point out assumptions on V or categories
of V -modules where this condition is known to hold.

The group schemes discussed above represent functors. For instance, AutO represents the
functor which assigns to a C-algebra R the group

AutO(R) =
{
z 7→ ρ(z) = a1z + a2z

2 + · · · | ai ∈ R, a1 a unit
}

of continuous automorphisms of the algebra RJzK preserving the ideal zRJzK. The group law
is given by composition of series: ρ1 · ρ2 := ρ2 ◦ ρ1. The subgroup scheme Aut+O of AutO
represents the functor assigning to a C-algebra R the group:

Aut+O(R) =
{
z 7→ ρ(z) = z + a2z

2 + · · · | ai ∈ R
}
.

To give more details about the actions, for a smooth curve C, let A utC be the smooth variety
whose set of points are pairs (P, t), with P ∈ C, t ∈ “OP and t ∈ mP \m2

P , a formal coordinate at
P . Here mP is the maximal ideal of “OP , the completed local ring at the point P . There is a simply
transitive right action of AutO on A utC → C, given by changing coordinates:

A utC × AutO → A utC , ((P, t), ρ) 7→ (P, t · ρ := ρ(t)) ,

making A utC a principal (AutO)-bundle on C. A choice of formal coordinate at P gives a
trivialization

AutO ≃t−→ A utP , ρ 7→ ρ(t).

If C is a nodal curve, then to define a principal (AutO)-bundle on C one may give a principal
(AutO)-bundle on its normalization, together with a gluing isomorphism between the fibers over
the preimages of each node. For simplicity, suppose C has a single node Q, and let C̃ → C denote
its normalization, with Q+ and Q− the two preimages of Q in C̃. A choice of formal coordinates
s± at Q±, respectively, determines a smoothing of the nodal curve C over Spec(CJqK) such that,
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locally around the point Q in C, the family is defined by s+s− = q. One may identify the fibers at
Q± by the gluing isomorphism induced from the identification s+ = γ(s−):

A utQ+ ≃s+ AutO
∼=−→ AutO ≃s− A utQ− , ρ(s+) 7→ ρ ◦ γ(s−),

where γ ∈ AutO is the involution defined as

γ(z) :=
1

1 + z
− 1 = −z + z2 − z3 + · · · .

This may be carried out in families, and the identification of the universal curve Cg
∼= Mg,1 → Mg

leads to the definition of the principal (AutO)-bundle ËMg,1 → Mg,1 (see [DGT21] for details).
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2. VOAS AND THEIR REPRESENTATIONS

I will describe VOAs and their modules, emphasizing properties relevant to the sheaves of con-
formal blocks defined from them.

2.1. A brief description of vertex operator algebras of conformal field theory type.

Definition 2.1. A VOA of CFT-type is a four-tuple V = (V, 1, ω, Y (·, z)), where:

(1) V =
⊕

i∈N Vi is a N-graded C–vector space with dimVi < ∞;
(2) 1 is an element in V0, called the vacuum vector;
(3) ω is an element in V2, called the conformal vector;
(4) Y (·, z) : V → End(V )Jz, z−1K is a linear map A 7→ Y (A, z) :=

∑
i∈ZA(i)z

−i−1.
The series Y (A, z) is called the vertex operator assigned to A.

The datum
(
V,1V , ω, Y (·, z)

)
must satisfy the following axioms:

(a) (vertex operators are fields) for all A,B ∈ V , A(i)B = 0, for i ≫ 0;
(b) (vertex operators of the vacuum) Y (1V , z) = idV :

1V
(−1) = idV and 1V

(i) = 0, for i ̸= −1,

and for all A ∈ V , Y (A, z)1V ∈ A+ zV JzK:

A(−1)1
V = A and A(i)1

V = 0, for i ≥ 0;

(c) (weak commutativity) for all A,B ∈ V , there exists an N ∈ Z≥0 such that

(z − w)N [Y (A, z), Y (B,w)] = 0 in End(V )
q
z±1, w±1

y
;

(d) (conformal structure) for Y (ω, z) =
∑

i∈Z ω(i)z
−i−1,[

ω(p+1), ω(q+1)

]
= (p− q)ω(p+q+1) +

c

12
δp+q,0 (p

3 − p) idV .

Here c ∈ C is the central charge of V . Moreover:

ω(1)|Vi
= i · idV , for all i, and Y

(
ω(0)A, z

)
= ∂zY (A, z).

Various measures of finiteness that have been developed to distinguish VOAs. For instance

Definition 2.2. A vertex algebra V is called finitely strongly generated if there exists finitely many
elements A1, . . ., Ar ∈ V such that V is spanned by the elements of the form

Ai1
(−n1)

· · ·Air
(−nr)

1,

with r ≥ 0 and ni ≥ 1 (see [Ara12]). We say that V =
⊕

i∈N Vi is strongly generated in degree d

if it is possible to choose the generators Aij to be in Vm for m ≤ d.

As it turns out if V is C1-cofinite (this is another measure of finiteness, defined soon), then V

is (strongly) finitely generated. After giving a couple of examples, I will define V -modules, and
then quotients of V that are easier to work with and and encode important information about the
V -modules.
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2.2. Examples. While their constructions are analogous, affine VOAs are strongly generated in
degree 1, while Virasoro VOAs have no degree 1 component, and are generated in degree 2 by
their Virasoro vector. Affine VOAs behave differently depending on the Lie algebra g and the level
ℓ used to define them. For instance, if g is a reductive Lie algebra, and ℓ ∈ Z>0, then affine VOAs
are rational and C2-cofinite (aka lisse). A VOA is rational if every admissible module is completely
reducible. That V is C2-cofinite implies the central charge of V and conformal dimensions of V -
modules are rational (shown in a physical context by Moore and Anderson [AM88] (and this may
be the origin of the confusion of the word rationality). If k is an admissible and not integral, then
the VOAs are not lisse, but they are quasi-lisse. Moreover, modules from the very nice category O
have rational conformal dimension and complete reducibility holds there. We next briefly define
these two types of examples.

2.2.1. Virasoro VOA. To construct the Virasoro VOA, we take the affinization of the Virasoro Lie
algebra. Let Vir≥0 := CK ⊕ zCJzK∂z be a Lie subalgebra of the Virasoro Lie algebra Vir, and let
Mc,h := U(Vir) ⊗U(Vir≥0) C1 be the Verma module of highest weight h ∈ C and central charge
c ∈ C ( Mc,h is a module over Mc,0). There is a unique maximal proper submodule Jc,h ⊂ Mc,h.
Set Lc,h := Mc,h/Jc,h, and Virc := Lc,0. By [Wan93, Theorem 4.2 and Corollary 4.1], one has that
Virc is rational if and only if c = cp,q = 1−6 (p−q)2

pq
, where p and q ∈ {2, 3, . . .} are relatively prime.

By [DLM00, Lemma 12.3] (see also [Ara12, Proposition 3.4.1]) Virc is C2-cofinite for c = cp,q,
and by [FZ92, Theorem 4.3], Virc is of CFT-type. By [Wan93, Theorem 4.2] the modules Lc,h are
irreducible if and only if

h =
(np−mq)2 − (p− q)2

4pq
, with 0 < m < p, and 0 < n < q.

Note that by definition h is the conformal dimension of Lc,h. These are unitary if |q − p| = 1.

2.2.2. Affine VOAs. Here we briefly discuss affine VOAs V , which together with their V -modules,
define the most well-studied examples of sheaves of coinvariants (and dual sheaves of conformal
blocks). For complete details, see [TUY89], [FZ92], and [Lia94]. VOAs of CFT-type, strongly
generated in degree 1 were classified in [Lia94]. For any so-called preVOA V of CFT-type by
[Lia94, Theorem 3.7], the degree 1 component V1 has the structure of a Lie algebra, with bracket
[A,B] = A(0)(B). Moreover, this Lie algebra (V1, [ , ]), which need not be simple, or reductive, is
equipped with a symmetric invariant bilinear form < A , B >= A(1)(B). Roughly speaking, in the
terminology of [Lia94], a preVOA satisfies many of the properties of a VOA except those involving
a conformal vector. Given any pair consisting of a Lie algebra g and symmetric invariant bilinear
form < , >, Following [FZ92], Lian defines the affinization, and proves in [Lia94, Theorem 4.11]
that for any preVOA V of CFT-type, if strongly generated in degree 1, then V is isomorphic to
a quotient of the affinization of (V1, < , >) by some ideal. The last step in the classification
is to determine which preVOAs admit a Virasoro vector, and have the structure of a VOA. He
classifies such Virasoro vectors (see [Lia94, Corollary 6.15]). Arguably the most interesting aspect
of [Lia94] is that this class is much richer than the affinizations of reductive Lie algebras and
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their quotients. New examples showing that this class is much richer than universal and simple
affine VOAs constructed from reductive Lie algebras as in [FZ92]. New examples are given in
[Lia94, §6.4]. We next briefly describe the affine Lie algebra g via the (normalized) Killing form.
As demonstrated in [Lia94], analogous affinizations can be defined for any Lie algebra (V1, [ , ]V1)

on which there is a symmetric invariant bilinear form < , >.
Given a simple Lie algebra (g, [ , ]g) over C, and the Cartan-Killing form1 ( , ) : g × g → C,

which conventionally, one normalizes so that (θ,θ)
2

= 1, and a formal parameter c, we consider

ĝ = g⊗ C((ξ))⊕ C · c,

a one-dimensional central extension of the Lie algebra g ⊗ C((ξ)), where C((ξ)) is the field of
Laurent series. Elements in ĝ are tuples (a, αc), with a =

∑
j Xj ⊗fj , with fj ∈ C((ξ)). We

define the bracket on simple tensors so that [(X⊗f, αc), (0, c)] = 0 and c is in the center of ĝ, and

[(X⊗f, αc), (Y⊗ g, βc)] =

Ç
[X,Y]⊗ fg , c(X,Y)

Killing

· Resξi=0(g(ξ)df(ξ))

å
.

The affine Lie algebra ĝ has a triangular decomposition ĝ = ĝ<0 ⊕ (g⊗ Cc)⊕ ĝ>0, where

ĝ<0 = g⊗ ξ−1C[ξ−1], ĝ>0 = g⊗ ξC[[ξ]], and ĝ≥0 = g⊗ Cc⊕ g⊗ ξC[[ξ]],

are Lie subalgebras. We note that ĝ<0 is generated by elements of the form X ⊗ ξ−m, where
X ∈ g, and for m ∈ N≥0 and by convention, such an element X ⊗ ξ−m := X(m) has degree
deg(X) +m− 1 = m ≥ 0, since all elements X ∈ g are taken to have degree 1.

Following [TUY89], to every g-module2 V λ, one can form the Verma module, a U(ĝ)-module3

Mλ := U(ĝ)⊗U((ĝ)≥0) V
λ ∼=

PBW
U((ĝ)<0)⊗C V λ.

For this, one extends the action of g on V λ to an action of ĝ≥0 on V λ by declaring that ĝ>0 act by
zero, and the central element c by ℓ · idV λ . In particular, from the trivial g-module with generator
1 ∈ g, one obtains the universal affine VOA V = Vℓ(g) ∼= U(ĝ) ⊗U((ĝ)≥0) 1

∼= U((ĝ)<0) ⊗C 1,
whose elements are (linear combinations of) strings X1

(m1)
·X2

(m2)
· · ·X i

(mi)
· 1, of degree

deg(X1
(m1)

·X2
(m2)

· · ·X i
(mi)

· 1) =
i∑

j=1

mi ≥ 0.

The vacuum element is the degree 0 element 1V = 1 where X is the identity element of g. The
Virasoro vector is given by the so-called Sugawara construction. For a basis B of g, orthonormal
with respect to the (normalized) Killing form, the conformal vector is defined to be

ω =
1

2(h∨ + ℓ)

∑
B∈B

: B(−1)B(−1) :=
1

2(h∨ + ℓ)

∑
B∈B

B2
(−1).

1This symmetric invariant bilinear form has the property that ([X,Y ]g, Z) + (Y, [X,Z]g) = 0.
2There is a 1-1 correspondence between finite dimensional irreducible representations of g and dominant integral

weights of g. These define a full-subcategory of irreducible representations of the affine Lie algebra ĝ.
3U(L) is the completion of the universal enveloping algebra associated to a Lie algebra L as defined in [FZ92].



14 A. GIBNEY

and vertex operators defined for elements A =
∑

j X
1,j
(m1j)

·X2,j
(m2,j)

· · ·X i,j
(mi,j)

· 1

Y (A, z) =
∑
m∈Z

A(m)z
−m−1,

where the endomorphism A(m) acts by cancatination. Give an example.
Generators {Lp}p∈Z of the associated Virasoro Lie-algebra Vir acting on V , are defined in this

case by Lp :=
1

2(h∨+ℓ)

∑
m∈Z

∑
B∈B : B(m)B(p−m) : such that : : denotes the normal ordering

(2) : X(n)Y(m) : =


X(n)Y(m) if n < m

1
2

(
X(n)Y(m) + Y(m)X(n)

)
if n = m

Y(m)X(n)if n > m.

By [TUY89, Lemma 1.2.2], the set {Lp} generates a Virasoro Lie algebra such that

[Lp, Lq] = (p− q)Lp+q +
cV
12

(p3 − p)δp+q,0, with cV =
ℓdim(g)

h∨ + ℓ
.

Recall that cV is the central charge of V . The universal affine VOA Vℓ(g) has a unique maximal
submodule Z, and after taking the quotient, one obtains the simple affine VOA Lℓ(g) = Vℓ(g)/Z.

2.3. Modules. There are a number of ways to define V -modules. Following [NT05], V -modules
are certain modules over U (V ), the (completed) universal enveloping algebra defined in [FZ92,
§1.3], called the current algebra in [NT05, §2.2]. This is an associative algebra, topologically
generated by the enveloping algebra a Lie algebra L(V ), described next.

As a vector space, L(V ) is the quotient (V ⊗ C((t)))/ im∇, where

∇ : V ⊗ C((t)) → V ⊗ C((t)), v ⊗ f 7→ L−1v ⊗ f + v ⊗ df

dt
.

Here L−1 = ω(0) is the coefficent of z−1 in the power series Y (ω, z) =
∑

m∈Z ω(m)z
−m−1. This op-

erator is like a derivative, since from the axioms for a VOA, for any v ∈ V , one has Y (L−1v, z) =
d
dz
Y (v, z). The bracket for the Lie algebra L(V ) is defined on generators v[i] = v ⊗ tj , and

u[j] = u⊗ tj by Borcherd’s identity, also a consequence of the axioms:

[v[i], u[j]] =
∞∑
k=0

Ç
i

k

å
(v(k)(u))[i+j−k].

There is a triangular decomposition L(V ) = L(V )<0 ⊕ L(V )0 ⊕ L(V )>0, where

L(V )<0 = Span
{
v[i] ∈ L(V ) : deg(v[i]) = deg(v)− i− 1 < 0

}
,

L(V )>0 = Span
{
v[i] ∈ L(V ) : deg(v[i]) = deg(v)− i− 1 > 0

}
, and

L(V )0 = Span
{
v[deg(v)−1] : v ∈ V homogeneous

}
.

By [NT05, Definition 2.3.1] a V -module W is a finitely generated U (V )-module such that
for any w ∈ W , the vector space F 0U (V )w is a finite-dimensional vector space, and there is a
positive integer d such that F dU (V )w = 0, where the filtration is induced from that of L(V ) (see
eg [NT05, §2.2]).
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As is explained in [NT05], the filtration of U (V ) allows one to show that V -modules are N-
gradable. These are called admissible modules and grading restricted weak V -modules in the
literature. We will refer to them as V -modules.

Such modules can also be described as pairs
(
W,Y W (−, z)

)
consisting of

(1) an N-graded vector space W =
⊕

i≥0Wi with finite dimensional graded pieces Wi and
W0 ̸= 0;

(2) a linear map Y W (−, z) : V → End(W )Jz, z−1K which sends an element A ∈ V to
Y W (A, z) =

∑
i∈ZA

W
(i)z

−i−1.

In order for this pair to define an admissible V -module, certain axioms need to hold [DGT22a,
FHL93, DL93]. Instead of reporting all the properties that (W,Y W (z,−)) must satisfy, we list
here only those some we refer to [DGT22a] for more details.

(1) conformal structure: the Virasoro algebra acts on W through the identification Lp
∼=

ωW
(p+1).

(2) vacuum axiom: Y W (1, z) = IdW .
(3) graded action: if A ∈ Vk, then AW

(j)Wℓ ⊆ Wℓ+k−j−1 and we write deg(AW
(j)) = deg(A) −

j − 1.
(4) commutator formula: [AW

(i), B
W
(j)] =

∑
k≥0

(
i
k

) (
A(k)(B)

)W
(i+j−k)

.

(5) associator formula:
(
A(i)(B)

)W
(j)

=
∑

k≥0(−1)k
(
i
k

) Ä
AW

(i−k)B
W
(j+k) − (−1)iBW

(i+j−k)A
W
(k)

ä
.

In what follows the endomorphism AW
(j) will simply be denoted by A(j). It is important to observe

that V is a V -module and that the commutator and associator formulas for V and for V -modules
both arise from the Jacobi identities for V and for V -modules. Moreover, when W is a simple V -
module, then there exists α ∈ C called the conformal dimension such that L0(w) = (α+deg(w))w

for every homogeneous element w ∈ W .

Definition 2.3. An n-tuple (W 1, . . . ,W n) of admissible V -modules W i of conformal dimension
αi is said to satisfy the integrality condition, or integrality property, if

∑n
i=1 αi is an integer (which

can be zero).

2.4. Zhu’s associative algebra and higher degree analogues. There is an associative algebra
A(V ), and a functor that takes A(V )-modules to V -modules, such that indecomposable A(V )-
modules are taken to indecomposable V -modules, and giving a 1-1 correspondence between simple
A(V )-modules and simple V -modules. We define these here.

We set, for n ≥ 0, and for a, b ∈ V

a ◦n b =
∞∑
i=0

Ç
deg(a) + n

i

å
ai−2n−2(b),

and let An(V ) be the quotient V/On(V ), where

O0(V ) = spanC{a ◦0 b |a, b ∈ V }, if n ≥ 1, On(V ) = spanC{a ◦n b, L(−1)a+ L(0)b |a, b ∈ V }.
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For

a ⋆n b =
n∑

m=0

∞∑
i=0

(−1)m
Ç
m+ n

n

åÇ
deg(a) + n

i

å
ai−m−n−1(b),

the pair (An(V ), ⋆n) is an associative algebra generalizing what is frequently referred to as Zhu’s
algebra A(V ) = A0(V ), studied in [FZ92]. For n ≥ 1, these were defined in [DLM97], and some
statements later clarified and corrected in [BVWY19].

As shown in [DLM97], for each pair of indices d ≥ e, since Oe(V ) ⊂ Od(V ), there are pro-
jections αd,e : Ad(V ) ↠ Ae(V ), and these satisfy αd,d = idAd(V ), and αe,f ◦ αd,e = αd,f for
d ≥ e ≥ f , and so these algebras form an inverse system

· · · ↠ Ad+1(V ) ↠ Ad(V ) ↠ · · · ↠ A1(V ) ↠ A0(V ) → 0.

So there is an inverse limit A∞(V ) together with homomorphisms χd : A∞(V ) → Ad(V ), such
that αd,e ◦ χd = χe, whenever d ≥ e, and satisfying the following universal property. Given any
associative algebra B and homomorphism βd : B → Ad(V ), satisfying αd,e ◦ βd = βe for d ≥ e,
there is a unique algebra homomorphism β : B → A∞(V ), making the natural associated diagram
commute.

Suppose that {M(d)}d∈N is an inverse system of abelian groups such that each M(d) is an Ad(V )

module, and such that for d ≥ e there are maps πd,e : M(d) → M(e) that satisfy

πd,e(a ·m) = αd,eπd,e(m),

for a ∈ Ad(V ) and m ∈ M(d). Then the inverse limit M(∞) of M(d) is naturally an A∞(V )-
module, and the action is continuous.

Given an admissible V -module W =
∑

d∈N Wd, we obtain such an inverse system:

Πd(W ) = ⊕d
e=0We, and for d ≥ e, and projection maps πd,e : Πd(W ) → Πe(W ).

By [BVWY19, Theorem 3.1], for a nonzero Ad(V )-module E satisfying the property that
for d > 0, E does not factor through Ad−1(V ), then Md(E) is an N-gradable V -module with
(Md(E))0 ̸= 0. If there is no nonzero submodule of E that factors through Ad−1(V ), then
Ωd/Ωd−1(Md(E)) ∼= E. In Prop 3.9 they show that if E is an indecomposable Ad(V )-module
that does not factor through Ad−1(V ), then Md(E) is an indecomposable N-gradable V -module
generated by its degree d subspace (with simple modules corresponding to simple modules).

For this we need higher d generalizations of the Lie Algebra from [DGT22a, Eq (34)], and a
Lemma about it shown for d = 0 in Step 2 of the proof of [DGT22a, Theorem 7.0.1].

2.5. Functors. We describe here Zhu’s functor taking A(V )-modules to V -modules, and follow-
ing [DGK22] a (compatible) functor taking A(V )-bimodules to U (V )2-modules. To do so, fol-
lowing [NT05, Theorem 3.3.5, (4) and (5)], let U (V ) be the completion of the universal envelop-
ing algebra for the Lie algebra L(V ), and recall the triangular decomposition of L(V ) (see §2.3).
We denote by U (V )≤0 the sub-U (V ) algebra, topologically generated by L(V )<0 ⊕ L(V )0. By
[DLM98, Proposition 3.1], the map U (V )0 ↠ A(V ) given by v[deg v−1] 7→ v is surjective.
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2.5.1. Zhu’s Functor. Any A(V )-module E is a U (V )0-module, and the action of U (V )0 on E

can be extended to an action of U (V )≤0 by letting L(V )<0 act trivially. One then sets

(3) M(E) := U (V )⊗U(V )≤0
E.

If E is simple, then M(E) has a unique, possibly zero, maximal sub-module J (E), and

L(E) := M(E)/J (E)

is simple, realizing the bijection between simple V -modules and simple A(V )-modules.

2.5.2. Bimodule Functor. Following [DGK22], we define Φ: A(V )-bimod → U (V )⊗2-mod as
the functor which associates to every A(V )-bimodule E the U (V )⊗2-module

(4) Φ(E) = Ind
U (V)⊗2

U (V)⊗2
≤0

E ∼= U (V)⊗2 ⊗U (V)⊗2
≤0

E,

where the action of a⊗ b ∈ U (V )⊗2
≤0 on e ∈ E is given by

(5) (a⊗ b)⊗ e 7→
®

a · e · θ(b) if a, b ∈ U (V )0
0 if a, b ∈ U (V )<0.

For b,b′ ∈ U (V )0, θ(bb′) = θ(b′)θ(b), giving a bimodule action [NT05, Proposition 4.1.1].

Example 2.4. The triplet algebras W(p) form an important family of non-rational, C2-cofinite
VOAs, which are strongly finitely generated in degree 2p− 1 by 1, ω, and three elements in 2p− 1,
for p ∈ Z≥2. There are 2p non-isomorphic simple W(p)-modules called by different notation in
the literature including {Λ(i),Π(i)}pi=1 in [AM88] (and {X±

s : 1 ≤ s ≤ p} in eg. [NT11, TW13]).
The corresponding simple A(W(p))-modules are denoted {Λ(i)0,Π(i)0}pi=1 in [AM88] (and by
{X±

s : 1 ≤ s ≤ p} in [NT11, TW13]). By [AM88, NT11], there is a bimodule decomposition

(6) A(W(p)) ∼=
2p⊕
i=1

Bi,

where components Bi are described as follows:

• For 1 ≤ i ≤ p − 1, we have that Bi
∼= C[ϵ]/ϵ2 ∼= Ihi,1, which is indecomposable and

reducible. In [NT11, TW13] this is denoted by ‹X+

i and it is the projective cover of the
simple A(W(p))-module X

+

i .
• Bp

∼= C ∼= Λ(p)0 ⊗ Λ(p)∨0 .
• For 1 ≤ i ≤ p, we have that Bp+i

∼= M2(C) ∼= Π(i)0 ⊗ Π(i)∨0 .

The generalized Verma modules induced from the irreducible indecomposable A(W(p))-modules
Λ(p)0, and Π(p)0, are simple (see [AM88, page 2678]). In particular, Λ(p) = M(Λ(p)0) =

L(Λ(p)0) and Π(p) = L(M(Π(p)0) = (Π(p)0)) [AM09].
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2.6. Standard finiteness conditions. V is

(1) C2-cofinite if and only if dim(V/C2(V )) < ∞, where C2(V ) := spanC
{
v(−2)u : v, u ∈ V

}
.

V C2-cofinite, =⇒ dim(A(V )) < ∞ [GN03].
(2) C1-cofinite if and only if dim(V+/C1(V )) < ∞, where

V+ =
⊕
d∈N≥1

Vd, and C1(V ) = SpanC{v(−1)(u), L(−1)(w) | v, u ∈ V+, w ∈ V }.

V is C2-cofinite =⇒ V is C1-cofinite, and by [KL99, Proposition 3.2], if V is C1-cofinite
=⇒ V is strongly finitely generated, and A(V ) is finitely generated.

(3) rational if and only if any V -module is a finite direct sum of simple V -modules.
V is rational =⇒ A(V ) is finite and semi-simple, by [Zhu96, Theorem 2.2.3].

(4) strongly rational if V is simple, self-dual, C2-cofinite, and rational.
(5) strongly finite if V is simple, self-dual, and C2-cofinite.
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3. SHEAVES OF COINVARIANTS AND DUAL SHEAVES OF CONFORMAL BLOCKS

When studying an object X in any category, it is important to determine the maps admitted by
it. One approach is to find vector bundles on X, whose sections can be interpreted as (twisted)
functions. Since the work of Tsuchiya, Ueno, and Yamada, and subsequent findings by a number
of researchers, we know that representations of VOAs satisfying certain conditions define vector
bundles on the moduli space of curves.
In these notes I will outline our contribution to this story, describing results from [DGT21,DGT22a,
DGT22b, DG21] joint work with Damiolini, Tarasca, and recently [DGK22] with Damiolini and
Krashen resulting in a reinterpretation of our original results. Vertex operator algebras (VOAs)
are ubiquitous, important in many areas of mathematics and mathematical physics. VOAs and
their representations are described in Lecture 2. Sheaves of coinvariants and their dual sheaves
of conformal blocks are initially defined on the stack ËMg,n (described in §1.4), as a quotient of a
constant bundle W • ⊗OÈMg,n

by the action of a sheaf of (Chiral) Lie algebras LÁCg,n
. This quotient

sheaf is then shown to descend, first to J g,n, the stack (introduced in Lecture 1) parametrizing
pointed curves with first order tangent data (the J is meant to stand for jets), then to Mg,n. There
are various ways to ensure the sheaf descends. For instance, if the conformal weights of the
modules are rational, the sheaves descend. In §3.1 I will describe the fibers of these sheaves, and
in §3.2 discuss their (known) properties.

3.1. Part 1: fibers. Because we are working with the stack ËMg,n, it is sufficient to define the
sheaves on a family of stable pointed coordinatized curves:

(C,P•, τ•) = (C → S, {Pi : S → C}ni=1, {τi : S → C}ni=1).

Given such a family, the fiber V(V,W •)(C,P•,τ•) depends on: (1) the collection of V -modules W i,
defined in §2.3; and (2) the action of the Chiral Lie algebra LC\P•(V ) on ⊗W i, defined here.

3.1.1. Lie algebras that act. The action of the Chiral Lie algebra on ⊗W i is defined via the diago-
nal action of the sheaf of ancillary Lie algebras L(V )n on the constant sheaf (⊗W i)⊗OÈMg,n

. The
fiber of the sheaf of ancillary Lie algebras at (C,P•, τ•) is the direct sum of Lie algebras LPi

(V ),
defined in §2.3. By [DGT22a] there is a coordinate independent version of LPi

(V ), which gives a
useful perspective for the definition of the Chiral Lie algebra, and which we briefly recount.

If ti is a local coordinate at Pi, then the ancillary Lie algebra of V at Pi is isomorphic to

LPi
(V ) ∼= H0

(
D×

Pi
,VC ⊗ ωC/Im∇

)
.

The sheaf VC was originally defined on smooth curves in [FBZ04]. A definition of the sheaf VC at
a nodal curve is given in [DGT22a] (an alternative is given in [DGT21]). The construction from
[DGT22a] yields a useful description of elements of LC\P•(V ) in terms of the normalization of the
curve. For simplicity, assume that C has a single node Q and let Q+ and Q− be the points lying
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above Q in the normalization C̃. Then LC\P•(V ) is the subquotient of

(7)
⊕
k∈N

Vk ⊗ H0
Ä
C̃ \ P•,Ω

1−k‹C ⊗ OC(−(k − 1)(Q+ +Q−))
ä
.

of elements σ for which [σQ+ ]0 = −θ[σQ− ]0, where θ is an involution defined in [DGT21,DGT22a].
The chiral Lie algebra for (C,P•) is then defined to be

LC\P•(V ) := H0 (C \ P•,VC ⊗ ωC/Im∇) .

One has a map LC\P•(V ) →
⊕n

i=1 LPi
(V ) given by these isomorphisms and restriction

H0(C \ P•,VC ⊗ ΩC/∇C) −→
n⊕

i=1

H0(D×
Pi
,VC ⊗ ΩC/∇C), σ 7→ (σPi

)ni=1.

To define the action of an image of such an element, recall that LPi
(V ) is generated by images of

elements v ⊗ tki in the quotient, which we denote suggestively by vi[k]). One can define the action
of vi[k] on w ∈ W i by vW

i

(k) (w), the endomorphism that appears as Fourier coefficient of

Y W i

(v, ti) =
∑
i∈Z

vW
i

(k) t
−k−1
i , where vW

i

(k) ∈ End(W i).

This induces a diagonal action of
⊕n

i=0 LPi
(V ) on the tensor product W • := W 1 ⊗ · · · ⊗W n.

To summarize: The sheaf of Chiral Lie algebras LÁCg,n
on ËMg,n acts on the constant bundle

W • ⊗ OÈMg,n
so that LÁCg,n\P•

(V ) · (W • ⊗ OÈMg,n
) is a sub-module of W • ⊗ OÈMg,n

. The sheaf is

(8) ÊVg(V ;W •) = W • ⊗ OÈMg,n

/
LÁCg,n\P•

(V ) · (W • ⊗ OÈMg,n
).

3.1.2. Descent. We describe how the sheaf of coinvariants depicted in (8) can be shown to de-
scend, first to J g,n, which is the space of tuples (C,P•, τ•), where τ• = (τ1, . . . , τn) with τi a
non-zero 1-jet of a formal coordinate at Pi for each i, and then when possible, to Mg,n:ËMg,n

π1
// J g,n

π2
// Mg,n .

Changing coordinates defines a transitive action of the group scheme (AutO)n (Lecture 1) on the
fibers of the projection π = π2 ◦ π1 : ËMg,n → Mg,n. This action gives ËMg,n the structure of
a principal (AutO)n-bundle over Mg,n. Moreover, AutO = Gm ⋉ Aut+O, and the projection
factors as a composition of an (Aut+O)⊕n-torsor and a G⊕n

m -torsor (see §1.4 for definitions):

(9)

ËMg,n

J g,n

Mg,n.

(Aut+O)⊕n

(AutO)⊕n

G⊕n
m
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For the descent to J g,n, we note that the actions of (Aut+O)⊕n and of LÁCg,n\P•
(V ) on W • ⊗

OÈMg,n
are compatible [DGT22a]. In other words the action of (Aut+O)⊕n on W • ⊗ OÈMg,n

pre-

serves the submodule LÁCg,n\P•
(V )(W •⊗OÈMg,n

), inducing an action of (Aut+O)⊕n on ÊVg(V ;W •).
Therefore, as explained in detail in [DGT22a], descending along this (Aut+O)⊕n-torsor, one ob-
tains a sheaf of coinvariants VJ(V ;M•) on J g,n.

VJ(V ;M•) :=
Ä
(π1)∗ ÊVg(V ;W •)

äAut+On

.

The descent to Mg,n is more complicated. If the conformal dimensions are not integers, an argu-
ment as given above isn’t immediately available. One must first use an idea inspired by Tsuchimoto
[Tsu93], explained heuristically as follows. When conformal dimensions of modules are rational,
there is a natural line bundle pulled back from Mg,n such that when one tensors it with VJ(V ;M•),
the Gn

m action becomes compatible, and an analogous descent to Mg,n is possible. One can then
tensor back the resulting sheaf on Mg,n with the dual of the original line bundle. The actual
argument is more complicated, and uses root stacks, as described in [DGT22a, Remark 8.7.3, (ii)].

When the sheaf V(V,W •) is defined on Mg,n, then fibers at (C,P•) are often denoted:

V(V,W •)|(C,P•) = [W •]LC\P•
=

W 1 ⊗ · · · ⊗W n

LC\P•(V ) · (W 1 ⊗ · · · ⊗W n)
.

Example 3.1. Admissible modules over C2-cofinite vertex operator algebras have rational con-
formal weights [Miy04a, Corollary 5.10], so their sheaves of coinvariants descend to Mg,n. Many
examples considered in the VOA literature are C2-cofinite, including Affine VOAs Vk(g) and Lk(g)

where g is a simple Lie algebra, and k ∈ Z>0, Virasoro Vc (with c in the discrete series), lattice
VOAs, Holomorphic VOAs (like the moonshine module). There are many otheres, for instance ob-
tained as tensor products, orbifold algebras and quotients. See [DGT21,DGT22a,DGT22b,DG21]
for specific examples and references.

Example 3.2. There are some non-C2-cofinite VOAs whose modules are known to have rational
conformal weights. For instance Lk(g), where g is a simple Lie algebra and k is an admissible
level that is not a positive integer, are not C2-cofinite. However, by [Ara16, Main Theorem],
the conformal weights of modules in category O are rational, as they are from (slightly) larger
categories (that allow for dense modules, spectral flow twists and finite length extensions as studied
in for instance in [CRW14]) where the weights are determined by those in Arakawa’s classification
by formulas that preserve rationality.

3.2. Part 2: Properties. We will next discuss various properties of sheaves of coinvariants and
dual sheaves of conformal blocks, summarized in the following table:
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V A = V/O(V ) modules W =
⊕

d∈N Wd sheaves of coinvariants
C1 finitely generated finitely generated over W0 quasi-coherent on J g,n

C2 finite dimensional
finitely generated over W0

rational conformal weight
coherent on Mg,n

rational
finite dimensional
and semi-simple

finitely generated over W0

completely reducible

rational
and C2

finite dimensional
and semi-simple

finitely generated over W0

rational conformal weight
completely reducible

vector bundles on Mg,n

strongly
rational

finite dimensional
and semi-simple

finitely generated over W0

rational conformal weight
completely reducible

vector bundles on Mg,n

Chern classes tautological

affine depends depends
g = 0 globally generated
& Chern classes free

It is possible to improve the diagram. For instance, certain categories of modules over C1-
cofinite (but not C2-cofinite) VOAs have rational conformal weights and so define coinvariants
on Mg,n. Moreover, by [DGK22], if V is C1-cofinite, then fibers at nodal curves have factoriza-
tion resolutions. Consequently, sheaves of coinvariants on Mg,n are coherent if V is C2-cofinite
[DGK22]. If V is both rational and C2-cofinite, factorization resolutions give factorization of
coinvariants, and sheaves of coinvariants are locally free of finite rank (ie. are vector bundles).

The main results on the table above rely on factorization resolutions, which allows one to rein-
terpret vector spaces of coinvariants on nodal curves in terms of coinvariants on a curve with fewer
singularities. To describe these, suppose C has only one node Q ∈ C, and let C̃ → C be the
normalization of C, with points Q+ and Q− lying over Q. To define coinvariants on C̃, one has
the A(V ) module W i for each point Pi, and it is natural to assign a single A(V )-bimodule E to
the pair of markings Q+ and Q− of C̃. One may then define the vector space of coinvariants
[W • ⊗ Φ(B)](‹C,P•∪Q±), where Φ is the functor, defined in§2, taking A(V )-bimodules to U (V )2-
modules, and compatible with Zhu’s functor M, also defined in §2. Our main technical tool asserts
that if V is C1-cofinite (which implies that A(V ) is finitely generated), the coinvariants [W •](C,P•)

and [W • ⊗ Φ(A(V ))](‹C,P•∪Q±) coincide (here A(V ) is considered as a bimodule over itself).
On the one hand, this rephrases the coinvariants [W •](C,P•) in terms of something associated

to a less singular curve C̃. However, the expression [W • ⊗ Φ(A(V ))](‹C,P•∪Q±) is, a priori, of a
somewhat different nature, as we have associated a single bimodule as opposed to a pair of A(V )

modules to the points Q+ and Q−. On the other hand, when A(V ) is factorizable, that is, it can be
written as a sum of the form A(V ) =

⊕
(X+

0 ⊗X−
0 ), we may identify the spaces

[W • ⊗ Φ(A(V ))](‹C,P•∪Q±) =
⊕

[W • ⊗X+ ⊗X−](‹C,P•∪Q±)
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with the vector space of coinvariants obtained by assigning the modules W • to the points P•, and
assigning X± to Q±. In particular, if V is rational and C2-cofinite (which implies that A(V ) is
finite and semi-simple) then A(V ) =

⊕
(X0 ⊗ X∨

0 ), a finite sum over all simple A(V )-modules
X0, and this recovers [DGT22a, Factorization Theorem]:

(10) [W •](C,P•)
∼=

⊕
[W • ⊗X ⊗X∨](‹C,P•∪Q±),

a finite sum, indexed by the isomorphism classes of all simple V -modules X .
It turns out that this is sharp—an associative algebra A is isomorphic to a finite direct sum of

tensor products of left and right A-modules if and only if A is finite and semi-simple. It follows
that for naturally occurring VOAs for which A(V ) is not semi-simple, but does satisfy finiteness
conditions (such as being finitely generated or finite dimensional), other approaches are needed to
relate coinvariants on nodal curves to coinvariants on curves with fewer singularities.

The strategy we take in [DGK22] is to observe that if V is C1-cofinite, then A(V ) has what we
call a factorization resolution · · · α→ ⊕ (X0 ⊗ Y0) → A(V ) → 0. We show that from any such
factorization resolution of A(V ), one obtains a factorization presentation of nodal coinvariants. In
particular, this expresses coinvariants at nodal curves as a quotient of a sum of coinvariants on the
normalization (as in (10)). However in this case, the sum, which may not be finite, is indexed by
indecomposable V -modules. This factorization presentation specializes to (10) if V is rational and
C2-cofinite, giving an alternative proof.

The proof involves two steps: First an application of the fact mentioned earlier, which asserts
that if V is C1-cofinite, one has a natural isomorphism

(11) [W •](C,P•)
∼= [W • ⊗ Φ(A(V ))](‹C,P•∪Q±).

In the second step, the right hand side of (11) shown to be the cokernel of a right exact functor
applied to a factorization resolution of A(V ).

Add detail here
There are two consequences of such expression in case V is C2-cofinite (which implies that

A(V ) is finite dimensional). In this case A(V ) has a unique bimodule decomposition as a finite
sum of principal indecomposable A(V )-bimodules (this has to be proved). We can then show:

(12) [W •](C,P•)
∼=

⊕
[W • ⊗X ⊗X ′](‹C,P•∪Q±) ⊕

⊕
[W • ⊗ Φ(I)](‹C,P•∪Q±),

where X and X ′ are dual simple V -modules obtained by applying the functor Φ to specified simple
indecomposable bimodules in its bimodule decomposition, and Φ(I) is a tensor product of inde-
composable V -modules given by the remaining principal indecomposable bimodules I . This is
illustrated in [DGK22] for the triplet W(p) and the Symplectic Fermions F (d)+, important fami-
lies of strongly finite, non-rational VOAs. One may refine (12) via a factorization resolution of the
indecomposable bimodules I , as is demonstrated in [DGK22] for the W(p).

The second consequence is that sheaves of coinvariants defined by representations of C2-cofinite
VOAs are coherent on Mg,n. Vector spaces of coinvariants at smooth pointed coordinatized curves
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were shown to be finite dimensional in this generality in [DGT22a, Proposition 5.1.1], based on
arguments made for a related construction in [AN03]. This result improves [DGT22a, Theorem
8.4.2.] which concludes that spaces of coinvariants at nodal curves are also finite dimensional if V
is both C2-cofinite and rational. This result achieves the first step towards showing that the sheaves
we consider may form vector bundles (see Lecture 4 for a discussion of the problem).

A vertex operator algebra V is C1 cofinite if and only if it is (strongly) generated in finite degree.
There are strongly finitely generated vertex operator algebras which are not rational or C2-cofinite,
and in this case fibers of the sheaf coinvariants at a point (C,P•) should be regarded as dependent
on tangent data to the curve C at the marked points Pi. The affine VOAs Vℓ(g), and Lℓ(g) are
defined for all ℓ ∈ C with ℓ ̸= −h∨. They are generated in degree 1 (so are C1-cofinite), but
are C2-cofinite if and only if ℓ is a positive integer. The Virasoro vertex operator algebras Virc
for c ∈ C are generated in degree 2, but if c is not in the discrete series, they are not rational or
C2-cofinite. If the sums in the numerator are not finite for such examples, they cannot be used
(as we do in the C2-cofinite case), to prove that the nodal coinvariants are finite dimensional, but
nevertheless these ideas apply.
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4. LECTURE 4: OPEN PROBLEMS

There are a number of sufficient conditions, some we have discussed, such that if satisfied by a
vertex algebra V and V -modules W i will guarantee that the corresponding sheaves of coinvariants
V(V,W •) have good properties. In this lecture I will present five open problems, the first three of
which involve finding conditions necessary to ensure these good properties hold. The remaining
problems aim to determine whether these sheaves give new information about the moduli space of
curves, beyond those defined by affine VOAs, and whether this new information has anything to
say about the F-Conjecture and the Mori Dream Space Conjecture, two longstanding problems.

Here is a summary of what we know:

V = ⊕d∈NVd A = V/O(V ) sheaves of coinvariants
CFT-type connection and QC on ⋆

C1 FG factorization presentations
C2 FD defined on Mg,n, and C
R FD & SS
R & C2 FD & SS VB on Mg,n

SR FD & SS VB on Mg,n tautological
affine depends g = 0 GG & free classes

On ⋆ refers to the fact that the sheaves are defined on ËMg,n, J g,n, and on Mg,n if ∆W i ∈ Q.
FG stands for finitely generated, FD for finite dimensional, SS means semi-simple, R rational,
SR means strongly rational, ∆W is the conformal weight of the module W , QC is quasi-coherent,
C means coherent, VB stands for vector bundle, GG is globally generated. For definitions see §2.6.

These findings (and some other work) has led to the following questions:

• Let V be a C1-cofinite VOA and {W i}ni=1 be n simple admissible V modules. What con-
ditions must hold on (V,W •) so that sheaves V(V,W •):
(1) are vector bundles?
(2) have tautological Chern classes?
(3) are positive? For instance:

(a) are globally generated (so Chern classes are base point free);
(b) Chern classes are nef but not free?
(c) have effective Chern classes, even if not nef?

• Do sheaves give any new information about the moduli space of curves? For instance:
(4) Do sheaves of coinvariants define new nef classes?
(5) Can one use the classes from these sheaves of coinvariants to say something new about

the F-Conjecture or the Mori Dream Space Question
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These questions will be discussed in more detail next.
That sheaves of coinvariants are vector bundles for any choice of modules in some category, is

equivalent to that category giving a (particular type of) conformal field theory. For instance, if V is
rational and C2-cofinite, any choice of admissible modules forms a vector bundle, and the category
of admissible modules forms a rational conformal field theory. If V is strongly rational, then Chern
characters form a cohomological field theory [DGT22b]. An important open problem, discussed in
Lecture 4, is whether or not the coherent sheaves defined by modules over C2-cofinite V are also
locally free. The categories of modules over strongly finite VOAs are believed to correspond to
logarithmic conformal field theories. Unlike for vector bundles defined by admissible modules over
strongly rational VOAs, it is unlikely that Chern classes of such vector bundles defined by modules
over strongly finite V would be tautological nor that Chern characters would form CohFTs.

4.1. Questions: (a) Given W 1, . . . ,W n modules over a C2-cofinite VOA V , is V(V ;W •) a vector
bundle? (b) If not, what additional assumptions are necessary so it is?

The question of whether sheaves of coinvariants defined by representations of strongly finite
VOAs are vector bundles was discussed in [DGK22], where we started to build the infrastructure
which may help answer this question.

4.1.1. Motivation. Following [DGK22], to motivate the question, we briefly describe, besides
what is summarized in the table above, the important properties these sheaves have, lending to a
comparison with the strongly rational case. For instance:

(A) V -modules are objects of a modular tensor category (MTC) [HL95, Hua05].
(B) In the language of [MS89], rational conformal field theories (RCFTs) are determined by

a coherent sheaf of coinvariants (and dual sheaf of conformal blocks), and of [FS87], by
vector bundles of coinvariants together with their projectively flat connection.

(C) Properties of the MTC from (A) correspond to those of sheaves of (B) [BK01].

A modular tensor category is a braided tensor category with additional structure (see [Tur94], and
in this context [CG17, §2.6]). If V is strongly rational, then every V -module is ordinary, and can
be expressed as a finite sum of simple V -modules Si. By [Zhu94], fusion coefficients

(13) W i ⊗W j = N k
ij W

k,

are determined by the dimensions of vector spaces of conformal blocks on M0,3

N k
ij = dim

(
V0(V ; (W i,W j, (W k)′)∨

)
∈ Z≥0.

Equation (13) gives the product structure on the fusion ring FusSimp(V ) = SpanZ{Si} spanned by
(isomorphism classes) of simple V -modules (with unit element V ).

A C2-cofinite but not rational VOA has at least one indecomposable but not simple module (such
a VOA or conformal field theory is called logarithmic). Let V be strongly finite (so as in 2.6, V is
C2-cofinite, simple, and self-dual).
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(A’) The braided tensor category Modgr(V ) [HLZ14] is conjecturally log-modular [CG17].
(B’) Logarithmic conformal field theories (LCFTs) are determined by finite dimensional vector

spaces of coinvariants and conformal blocks defined by V -modules [CG17].
(C’) Features of (A’) and (B’) correspond to properties of the sheaves V(V ;W •).

Log modular categories are braided tensor categories with certain additional structure (see [CG17,
Def 3.1]). If V is strongly finite, the important modules are the (finitely many) projectives {Pi}i∈I ,
which consist of the simple modules and their projective covers. By [CG17, Prop 3.2, part (d)], if
[CG17, Conj 3.2] holds, then these projective V -modules form an ideal in Modg·r(V ), closed under
tensor products, and taking contragredients, with fusion coefficients given in terms of dimensions
of vector spaces of conformal blocks.

4.1.2. Approach. By [DGK22, Corollary], if V is C2 cofinite, then V(V ;W •) is coherent. There-
fore, part (a) asks whether V(V ;W •) is locally free. For V rational and C2-cofinite, that V(V,W •)

is locally free follows in large part from the sewing theorem [DGT22a, Theorem 8.5.1] (see
[DGT22a, VB Corollary]). As we discuss in [DGK22] sewing theorems come up in a number
of different contexts. According to the physical arguments described by Moore and Seiberg in
[MS89], to construct a conformal field theory based on representations of VOAs, a key consis-
tency condition is the modular invariance of the characters of irreducible representations of V . In
[FS17], in studying CFTs, the authors are interested in the identification of spaces of correlation
functions, which are compatible with the sewing of Riemann surfaces. Such conditions often in-
clude compatibility with respect to the sewing of surfaces (see [FS17] and references therein). A
sewing result has been proved for curves of genus g ∈ {0, 1} by Huang in [HL13]. In [Zhu96],
this was shown for strongly rational VOAs, and in [Miy04b] an analogous statement was shown in
case V is strongly finite.

4.2. Questions: (a) What are the Chern classes of V(V ;W •)? (b) Are they tautological?

In case V is strongly rational, then by [DGT22b, Theorem 1], the collection consisting of the
Chern characters of all vector bundles of coinvariants forms a semisimple cohomological field
theory, giving rise to explicit expressions for Chern classes (see [DGT22b, Corollaries 1 and 2]).
This was proved following the original result for Verlinde bundles [MOP15, MOP+17].

If V is strongly finite, but not rational, while one still has Chern characters (with Q-coefficients)
an analogous CohFT is not obviously available. For a semisimple CohFT, one naturally obtains
the structure of a Fusion ring, which is necessarily semi-simple. In the strongly finite, non-rational
case, there are three options for what could play the role of a fusion ring, including FusSimp(V )

spanned over Z by the projective modules. For example the 4p − 2 simple and indecompos-
able W(p)-modules discussed in §2.4 are closed under tensor products and their Z-span forms
FusSimp(W(p)), but this ring is not semi-simple. One may therefore need new ideas for computing
Chern classes. As factorization presentations are quotients, it seems unlikely that classes will be
generally tautological.
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4.3. Question: Which sheaves of coinvariants have positivity properties? The strongest posi-
tivity one can hope for is that sheaves of coinvariants are globally generated, and this question has
been considered in [DG21], with the best known results for affine VOAs, constructed from (certain
quotients of) affinizations of a Lie algebra g, and ℓ ∈ C, with −ℓ not equal to the dual Cox-
eter number. We next summarize the results from [DG21], which were inspired by results from
[Fak12]. For g simple, the simple affine VOA V = Lℓ(g) is of CFT-type, generated by its degree
1 component V1

∼= g. It is rational and C2-cofinite if and only if ℓ ∈ Z>0. Sheaves V(Lℓ(g),W
•),

were shown to be vector bundles in [TUY89], and globally generated on M0,n in [TUY89,Fak12].
By [GG12, Theorem 1], sheaves of coinvariants defined by n simple admissible modules over a

vertex operator algebra strongly generated in degree 1 and of CFT-type, are globally generated on
J 0,n, and on M0,n, if they descend.

As in [DGK22, Remark 1.4.1], by [Lia94] the VOAs in [DGK22, Theorem 1] are quotients of
the affinization of a not necessarily reductive Lie algebra structure on their degree 1 component.
By [DM06], if V is simple, strongly generated in degree one, rational, and self-contragredient,
then V ∼=

⊗r
i=1 Lℓi(gi), with gi simple Lie algebras, ℓi ∈ Z>0, and V1

∼=
⊕r

i=1 gi. In [DGK22,
Theorem 1], V need not be simple, C2-cofinite or rational, and may for instance be applied to
Lℓ(g), for g simple and ℓ admissible, and not in Z>0. Such VOAs Lℓ(g) are not C2-cofinite, but
are quasi-lisse, a natural generalization of C2-cofiniteness, introduced in [AK18]. It follows from
[Ara16, Main Theorem], that simple admissible highest weight modules have rational conformal
weights, as do more general V -modules (see Remark 3.2). As in [Lia94], there are many other
examples to which Theorem 1 applies.

By [GG12, Corollary 1], sheaves described in Theorem 1 are coherent. This improves [AN03]
giving coherence of V(V,W •) on M0,n for V is C2-cofinite, self-contragredient, and of CFT-
type, [DGK22] proving coherence on M0,n for C2 cofinite V of CFT-type, and [DGT22a] where
one assumes V is also rational. Such sheaves are vector bundles on M0,n. If V is C2-cofinite
and rational, by [DGT22a] these are vector bundles on Mg,n, these vector bundles are globally
generated on M0,n, extending [TUY89, Fak12].

While we haven’t found conditions to guarantee global generation for g > 0, or for VOAs which
are not strongly generated in degree 1, to illustrate the subtlety of this problem, we give several
representative examples, including:

• globally generated and positive bundles from VOAs not strongly generated in degree 1;
• and sheaves of coinvariants that are not globally generated.

Let X be a projective, not necessarily smooth variety defined over an algebraically closed field.
Good references for the concepts below are [Laz04a, Laz04b].

Definition 4.1. A variety X is called Q-factorial if every Weil divisor on X is Q-Cartier. We
assume today that X is a Q-factorial normal, projective variety over the complex numbers. The
moduli spaces Mg,n have these properties.
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Definition 4.2. Divisors D1 and D2 are numerically equivalent, written D1 ≡ D2, if they intersect
all irreducible curves in the same degree. Curves C1 and C2 are numerically equivalent, written
C1 ≡ C2 if C1 ·D = C2 ·D for every irreducible subvariety D of codimension one in X .

Definition 4.3. We set N1(X)Z equal to the vector space of curves up to numerical equivalence,
and N1(X)Z equal to the vector space of divisors up to numerical equivalence, and set

N1(X)Q = N1(X)Z ⊗Z Q, N1(X) = N1(X)R = N1(X)Z ⊗Z R,

and

N1(X)Q = N1(X)Z ⊗Z Q, N1(X) = N1(X)R = N1(X)Z ⊗Z R.

Definition 4.4. The pseudo effective cone Effk(X) ⊂ Nk(Mg,n) is defined to be the closure of the
cone generated by k-cycles with nonnegative coefficients. Similarly Eff

k
(X) ⊂ Nk(X) is defined

to be the closure of the cone generated by cycles of codimension k with nonnegative coefficients.

The cones Effk(X), and Eff
k
(X) are full dimensional, spanning the vector spaces Nk(X), and

Nk(X). They are pointed (containing no lines), closed, and convex.

Definition 4.5. The Nef Cone Nefk(X) ⊂ Nk(X) is the cone dual to Effk(X).

As the dual of Effk(X), the nef cone has all of the nice properties that Effk(X) does.
The nef cone can also be defined as the closure of the cone generated by semi-ample divisors –

divisors that correspond to morphisms, and

f : X → Y is a regular map, then f ∗(Nef(Y )) ⊂ Nef1(X).

Given a projective variety Y , and a morphism f : X −→ Y ↪→ PN , then for any ample divisor
A = O(1)|Y on Y , one has the pullback divisor D = f ∗A on X is base point free. In fact, this
divisor D is not only base point free, it has the much weaker property that it is nef. For if C is a
curve on our projective variety X , then by the projection formula

D · C = f∗(D · C) = A · f∗C,

which is zero if the map f contracts C, and otherwise, as A is ample, it is positive.
It is not true that every nef divisor on an arbitrary proper variety X has an associated morphism;

To have such a property would be very special (a dream situation). But as we saw above, the
divisors that give rise to maps do live in the nef cone, and for that reason the nef cone can be used
a tool to understand the birational geometry of the space.

The following is an even more refined concept that won’t be mentioned in the lecture.

Definition 4.6. For a Q-Cartier divisor D on a proper variety X , we define:

• the stable base locus of D to be the union (with reduced structure) of all points in X which
are in the base locus of the linear series |nmD|, for all n, where m is the smallest integer
≥ 1 such that mD is Cartier;
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• A moving Q-Cartier divisor to be a divisor whose stable base locus has codimension 2 or
more; and

• the moving cone Mov(X) of X , is the closure of the cone of moving divisors.

Sufficiently high and divisible multiples of any effective divisor D on X will define a rational
map (although not necessarily a morphism) from X to a projective variety Y . The stable base
locus of D is the locus where the associated rational map will not be defined. The pseudo-effective
cone may be divided into chambers having to do with the stable base loci [ELM+06, ELM+09].
Moreover, if

f : X 99K Y is a rational map, then f ∗(Nef(Y )) ⊂ Mov(X),

and we have

Nef1(X) ⊆ Mov(X) ⊆ Eff
1
(X).

4.3.1. Examples. Next we consider a simple example to illustrate how even very crude informa-
tion about the location of the cone of nef divisors with respect to the effective cone tells us valuable
information about the geometry of the variety X , as we see for Mg.

 as

I

do
h

FIGURE 6. Nef1(M3) ⊂ Eff
1
(M3) with generators λ, 12λ− δ0, and 10λ− δ0 − 2δ1.

In general we can say the following:

Theorem 4.7. Every nef divisor on Mg is big. In particular, there are no morphisms, with con-
nected fibers from Mg to any lower dimensional projective varieties other than a point.

Theorem 4.7 says that the nef cone of Mg sits properly inside of the cone of effective divisors–
and their extremal faces only touch at the origin of the Nerón Severi space.

The statement for pointed curves is a little bit more complicated, but still very simple in the
grand scheme of things:

Theorem 4.8. For g ≥ 2, any nef divisor is either big or is numerically equivalent to the pullback
of a big divisor by composition of projection morphisms. In particular, for g ≥ 2, the only mor-
phisms with connected fibers from Mg,n to lower dimensional projective varieties are compositions
of projections given by dropping points, followed by birational maps.
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4.4. Do sheaves of coinvariants give new nef classes? We wonder if first Chern classes of
sheaves reside outside of the cone spanned by first Chern classes of sheaves defined by affine
VOAs Lℓ(g) where g is a simple Lie algebra and ℓ ∈ Z>0?

4.5. F-Conjecture and MDS Conjecture. The F-Conjecture and MDS Conjecture arise from the
general observation that Mg,n resembles other very well understood spaces. For instance, as we
have seen as a moduli space, Mg,n can be compared to a Grassmannian variety (and Mumford
did this when he defined the tautological ring), and as Kapranov proved, M0,n is a quotient of
a Grassmannian. As Fulton pointed out by, the action of the symmetric group Sn on Mg,n by
permuting the marked points, can be compared with the action of an algebraic torus G ∼= (C∗)n on
a toric variety, or the transitive action of an algebraic group G a homogeneous variety. In fact Sn

is the automorporphism group of M0,n, as Fulton predicted it was.
Group actions are useful. For instance those sub-loci of a toric or homogeneous variety that are

preserved by the group action play an important role in understanding their cycle structure.
An effective cycle E of dimension k on a variety X of dimension d is a formal sum of nu-

merical equivalence classes of k-dimensional sub-loci on X . Two effective cycles E1 and E2 are
numerically equivalent, written E1 ≡ E2, if the number of points (counted with multiplicity) of the
intersections E1 ∩ Z and E2 ∩ Z are equal, for all complementary sub-loci Z ⊂ X of dimension
d− k. There are other (related) types of equivalence including algebraic and linear.

Since sums and positive multiples of effective cycles remain effective, these form cones, which
for proper varieties live in finite dimensional vector spaces. These cones (and their closures) are
combinatorial devices that encode geometric data about proper varieties. On (complete) toric va-
rieties and on homogeneous varieties, on which a group G acts transitively, the G-invariant loci
determine such cones. Boundary cycles (equivalence classes of boundary loci) are analogous to G-
invariant loci on a homogeneous or toric variety. It is natural therefore to ask, by analogy, whether
the boundary loci on Mg,n play the same important role.

4.5.1. The F-Conjecture. Recall from the first lecture that in Mg,n, the locus

δk(Mg,n) = {(C, p⃗) ∈ Mg,n : C has at least k nodes }

has codimension k. For each k, the set δk(Mg,n) decomposes into irreducible component indexed
by dual graphs Γ with k edges. Moreover, the closure of the component corresponding to Γ con-
tains components consisting of curves whose corresponding dual graph Γ′ contracts to Γ. The
resulting stratification of the space is both reminiscent and analogous to the combinatorial struc-
ture determined by the torus invariant loci of a toric variety.

On a complete toric variety, every effective cycle of dimension k can be expressed as a linear
combination of torus invariant cycles of dimension k. Fulton compared the action of the symmetric
group Sn on M0,n with the action of an algebraic torus a toric variety. Following this analogy, he
asked whether a variety of dimension k could be expressed as an effective combination of boundary
cycles of that dimension. As M0,n is rational, of dimension n− 3, this is true for points and cycles
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of codimension n − 3. For the statement to be true for divisors, it would say that every effective
divisor would be in the cone spanned by the boundary divisors. This was proved false by Keel
[GKM02, page 4] and Vermeire [Ver02], who found effective divisors not in the convex hull of
the boundary divisors. For the statement to be true for curves, it would say that the Mori cone
of curves is spanned by irreducible components of δn−4(M0,n): whose dual graph is distinctive:
the only vertex that isn’t trivalent has valency four. In particular, these are all curves that can be
described as images of attaching or clutching maps from M0,4.

Of course this question could just as well be asked for higher genus, and Faber did this, proving
the statement for M3 and M4 (see eg. [Fab90, Intermezzo]).

In honor of Faber and Fulton, the numerical equivalence classes of the irreducible components
of δ3g−4+n(Mg,n) are called F-Curves. One can ask the following question:

Question 4.9. (The F-Conjecture [GKM02]) Is every effective curve numerically equivalent to an
effective combination of F-Curves? Otherwise said, can one say that a divisor is nef, if and only if
it nonnegatively intersects all the F-Curves?

In [GKM02], we showed that in fact a positive solution to this question for Sg-invariant nef
divisors on M0,g+n would give a positive answer for divisors on Mg,n. In particular, the birational
geometry of M0,g controls aspects of the birational geometry of Mg. We know now that the answer
to this question is true on M0,n for n ≤ 7 [KM13], and on Mg for g ≤ 24 [Gib09].

4.5.2. The MDS question. Another analogy between M0,n and toric varieties prompted Hu and
Keel to ask whether M0,n is a so-called Mori Dream Space. We now know, due to the work of
Castravet and Tevelev, that this is not true in general. I’ll define a Mori Dream Space and state
the results of Castravet and Tevelev. To do so, we need first the definition of a so-called small
Q-factorial modification of X , defined as follows:

Definition 4.10. Let X be a normal projective variety. A small Q-factorial modification of X is a
birational map4 f : X → Y that is an isomorphism in codimension one (ie. is small) to a normal
Q-factorial projective variety Y . We refer to f as an SQM for short.

Definition 4.11. A normal projective variety X is called an MDS if:

(1) X is Q-factorial and Pic(X)Q ∼= N1(X)Q;
(2) Nef(X) is generated by finitely many semi-ample line bundles;
(3) there is a finite collection of SQMs fi : X → Xi such that each Xi satisfies (1) and (2)

and Mov(X) is the union of f ∗
i (Nef(Xi)).

Extremely well behaved schemes, like toric and log Fano varieties, where the minimal model
program can be carried out without issue, were deemed “Mori Dream Spaces” by Hu and Keel
(MDS for short). The moduli space of stable n-pointed genus zero curves M0,n is Fano for n ≤ 6,
and so is a MDS in that range. While not Fano for n ≥ 7, a comparison between the stratification

4In particular, this map f need not be regular.
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of M0,n, given by curves according to topological type, to the stratification of a toric variety given
by its torus invariant sub-loci, prompted Hu and Keel to ask whether M0,n is a MDS for all n. This
question has resulted in a great deal of work in the literature both about M0,n and related spaces. As
Castravet and Tevelev point out in their paper, for about 15 years now, many researchers have tried
to understand this particular problem. Other related questions go back to the work of Mumford.

Castravet and Tevelev in [CT15], prove that M0,n is not a MDS as long as n is at least 134. The
authors assert that rather than compare M0,n to a toric variety, one should rather think of it as the
blow up of a toric variety – namely, the blow up of the Losev Manin space LMn at the identity
of the torus. Using their work, in [GK16], González and Karu showed M0,n is not an MDS as
long as n is at least 13. A very recent preprint of Hausen, Keicher, and Laface [HKL18] studies
the blow-up of a weighted projective plane at a general point, giving criteria and algorithms for
testing if the result is a Mori dream space. As an application, using the framework of Castravet
and Tevelev, they show that M0,n is not an MDS as long as n ≥ 10. The three cases 7, 8, and 9

therefore seem to remain open, as far as I know.

4.6. What comes out of these questions? In Castravet and Tevelev’s proof that M0,n is not a
MDS, they ultimately show that the third criterion of the definition for a MDS (see Definition
4.11) fails. If the second condition in the definition for a MDS, the prediction is that the Nef cone
of M0,n should have a finite number of extremal rays, and that every nef divisor should be semi-
ample. Moreover, if in the increasingly unlikely event that the F-Conjecture were to hold for M0,n,
then the Nef cone would have finitely many extremal rays. Therefore, it makes sense to ask:

Question 4.12. (1) Is Nef1(M0,n) polyhedral?
(2) Is every element of Nef1(M0,n) semi-ample?

It would be interesting to see that the answer to part (b) is yes, but that there are so many nef
divisors that the answer to part (a) is no. This has led me to my current work about sheaves on
Mg,n defined by representations of vertex operator algebras.
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tifiques de l’École normale supérieure, to appear (2022). ↑↑9, ↑15, ↑16, ↑19, ↑20, ↑21, ↑23, ↑24, ↑27,
↑28

[DGT22b] , Vertex algebras of CohFT-type, Facets of algebraic geometry. Vol. I, 2022, pp. 164–189.
MR4381900 ↑↑19, ↑21, ↑26, ↑27

[DL93] Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Prog
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[GK16] José Luis González and Kalle Karu, Some non-finitely generated Cox rings, Compos. Math. 152 (2016),
no. 5, 984–996. MR3505645 ↑↑33

[GKM02] Angela Gibney, Sean Keel, and Ian Morrison, Towards the ample cone of Mg,n, J. Amer. Math. Soc.
15 (2002), no. 2, 273–294. MR1887636 ↑↑32

[GN03] Matthias R. Gaberdiel and Andrew Neitzke, Rationality, quasirationality and finite W -algebras,
Comm. Math. Phys. 238 (2003), no. 1-2, 305–331. MR1990879 ↑↑18

[Har84] Joe Harris, Recent work on Mg , Proceedings of the International Congress of Mathematicians, Vol. 1,
2 (Warsaw, 1983), 1984, pp. 719–726. MR804727 ↑↑2

[HH09] Brendan Hassett and Donghoon Hyeon, Log canonical models for the moduli space of curves: the first
divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471–4489. MR2500894 ↑↑2

[HH13] , Log minimal model program for the moduli space of stable curves: the first flip, Ann. of Math.
(2) 177 (2013), no. 3, 911–968. MR3034291 ↑↑2

[HKL18] Jürgen Hausen, Simon Keicher, and Antonio Laface, On blowing up the weighted projective plane,
Math. Z. 290 (2018), no. 3-4, 1339–1358. MR3856856 ↑↑33

[HKT06] Paul Hacking, Sean Keel, and Jenia Tevelev, Compactification of the moduli space of hyperplane ar-
rangements, J. Algebraic Geom. 15 (2006), no. 4, 657–680. MR2237265 ↑↑2

[HKT09] , Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo sur-
faces, Invent. Math. 178 (2009), no. 1, 173–227. MR2534095 ↑↑2

[HL13] Yi-Zhi Huang and James Lepowsky, Tensor categories and the mathematics of rational and logarithmic
conformal field theory, J. Phys. A 46 (2013), no. 49, 494009, 21. MR3146015 ↑↑27

[HL95] , A theory of tensor products for module categories for a vertex operator algebra. III, J. Pure
Appl. Algebra 100 (1995), no. 1-3, 141–171. MR1344848 ↑↑26

[HLZ14] Yi-Zhi Huang, James Lepowsky, and Lin Zhang, Logarithmic tensor category theory for generalized
modules for a conformal vertex algebra, I: introduction and strongly graded algebras and their gener-
alized modules, Conformal field theories and tensor categories, 2014, pp. 169–248. MR3585368 ↑↑27

[HM06] Christopher D. Hacon and James McKernan, Boundedness of pluricanonical maps of varieties of gen-
eral type, Invent. Math. 166 (2006), no. 1, 1–25. MR2242631 ↑↑2

[HM82] Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math.
67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR664324 ↑↑5

[Hua05] Yi-Zhi Huang, Vertex operator algebras, fusion rules and modular transformations, Noncommutative
geometry and representation theory in mathematical physics, 2005, pp. 135–148. MR2184018 ↑↑26

[Kee92] Sean Keel, Intersection theory of moduli space of stable n-pointed curves of genus zero, Trans. Amer.
Math. Soc. 330 (1992), no. 2, 545–574. MR1034665 ↑↑8

[KL99] Martin Karel and Haisheng Li, Certain generating subspaces for vertex operator algebras, J. Algebra
217 (1999), no. 2, 393–421. MR1700507 ↑↑18

[KM13] Seán Keel and James McKernan, Contractible extremal rays on M0,n, Handbook of moduli. Vol. II,
2013, pp. 115–130. MR3184175 ↑↑32

[KSB88] J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math.
91 (1988), no. 2, 299–338. MR922803 ↑↑2



38 A. GIBNEY

[Laz04a] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebi-
ete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Clas-
sical setting: line bundles and linear series. MR2095471 ↑↑28

[Laz04b] , Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.
Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd
Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity
for vector bundles, and multiplier ideals. MR2095472 ↑↑28

[Lia94] Bong H. Lian, On the classification of simple vertex operator algebras, Comm. Math. Phys. 163 (1994),
no. 2, 307–357. MR1284787 ↑↑12, ↑13, ↑28

[Miy04a] Masahiko Miyamoto, Modular invariance of vertex operator algebras satisfying C2-cofiniteness, Duke
Math. J. 122 (2004), no. 1, 51–91. MR2046807 ↑↑21

[Miy04b] , Modular invariance of vertex operator algebras satisfying C2-cofiniteness, Duke Math. J. 122
(2004), no. 1, 51–91. MR2046807 ↑↑27

[MOP15] Alina Marian, Dragos Oprea, and Rahul Pandharipande, The first Chern class of the Verlinde bundles,
String-Math 2012, 2015, pp. 87–111. MR3409789 ↑↑27

[MOP+17] A. Marian, D. Oprea, R. Pandharipande, A. Pixton, and D. Zvonkine, The Chern character of the
Verlinde bundle over Mg,n, J. Reine Angew. Math. 732 (2017). MR3717090 ↑↑27

[MS89] Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys.
123 (1989), no. 2, 177–254. MR1002038 ↑↑26, ↑27

[NT05] Kiyokazu Nagatomo and Akihiro Tsuchiya, Conformal field theories associated to regular chiral vertex
operator algebras. I. Theories over the projective line, Duke Math. J. 128 (2005), no. 3, 393–471.
MR2145740 ↑↑14, ↑15, ↑16, ↑17

[NT11] , The triplet vertex operator algebra W (p) and the restricted quantum group Uq(sl2) at
q = e

πi
p , Exploring new structures and natural constructions in mathematical physics, 2011, pp. 1–

49. MR2867143 ↑↑17
[Tsu93] Yoshifumi Tsuchimoto, On the coordinate-free description of the conformal blocks, J. Math. Kyoto

Univ. 33 (1993), no. 1, 29–49. MR1203889 ↑↑21
[Tur94] V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18,

Walter de Gruyter & Co., Berlin, 1994. MR1292673 ↑↑26
[TUY89] Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal family of

stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical me-
chanics, 1989, pp. 459–566. MR1048605 ↑↑12, ↑13, ↑14, ↑28

[TW13] Akihiro Tsuchiya and Simon Wood, The tensor structure on the representation category of the Wp

triplet algebra, J. Phys. A 46 (2013), no. 44, 445203, 40. MR3120909 ↑↑17
[Ver02] Peter Vermeire, A counterexample to Fulton’s conjecture on M0,n, J. Algebra 248 (2002), no. 2, 780–

784. MR1882122 ↑↑32
[Wan93] Weiqiang Wang, Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices 7

(1993), 197–211. MR1230296 ↑↑12
[Zhu94] Yongchang Zhu, Global vertex operators on Riemann surfaces, Comm. Math. Phys. 165 (1994), no. 3,

485–531. MR1301621 ↑↑26
[Zhu96] , Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996),

no. 1, 237–302. MR1317233 ↑↑18, ↑27



VERTEX ALGEBRAS AND MODULI SPACE OF CURVES 39

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHIL, PA 19104-6395
Email address: angela.gibney@gmail.com


	Introduction
	1. Lecture 1: The moduli space of curves and vertex operator algebras
	1.1. Why moduli?
	1.2. Moduli of curves
	1.3. Moduli of pointed curves
	1.4. Moduli of stable coordinized curves

	2. VOAs and their representations
	2.1. A brief description of vertex operator algebras of conformal field theory type
	2.2. Examples
	2.3. Modules
	2.4. Zhu's associative algebra and higher degree analogues
	2.5. Functors
	2.6. Standard finiteness conditions

	3. Sheaves of coinvariants and dual sheaves of conformal blocks
	3.1. Part 1: fibers
	3.2. Part 2: Properties

	4. Lecture 4: Open problems
	4.1. Questions:
	4.2. Questions:
	4.3. Question: Which sheaves of coinvariants have positivity properties?
	4.4. Do sheaves of coinvariants give new nef classes?
	4.5. F-Conjecture and MDS Conjecture
	4.6. What comes out of these questions?

	5. acknowledgements
	Index
	References

